Abstract:We report on a concerted effort aimed at understanding the origin and history of the pre-solar nanodiamonds in meteorites including the astrophysical sources of the observed isotopic abundance signatures. This includes measurement of light elements by secondary ion mass spectrometry (SIMS), analysis of additional heavy trace elements by accelerator mass spectrometry (AMS) and dynamic calculations of r-process nucleosynthesis with updated nuclear properties. Results obtained indicate that: (i) there is no evidence for the former presence of now-extinct 26 Al and 44 Ti in our diamond samples other than what can be attributed to silicon carbide and other 'impurities', and this does not offer support for a supernova (SN) origin but neither does it negate it; (ii) analysis by AMS of platinum in 'bulk diamond' yields an overabundance of r-only 198 Pt that at face value seems more consistent with the neutron burst than with the separation model for the origin of heavy trace elements in the diamonds, although this conclusion is not firm given analytical uncertainties; (iii) if the Xe-H pattern was established by an unadulterated r-process, it must have been a strong variant of the main r-process, which possibly could also account for the new observations in platinum.
Abstract:We report on a concerted effort aimed at understanding the origin and history of the pre-solar nanodiamonds in meteorites including the astrophysical sources of the observed isotopic abundance signatures. This includes measurement of light elements by secondary ion mass spectrometry (SIMS), analysis of additional heavy trace elements by accelerator mass spectrometry (AMS) and dynamic calculations of r-process nucleosynthesis with updated nuclear properties. Results obtained indicate that: (i) there is no evidence for the former presence of now-extinct 26 Al and 44 Ti in our diamond samples other than what can be attributed to silicon carbide and other 'impurities', and this does not offer support for a supernova (SN) origin but neither does it negate it; (ii) analysis by AMS of platinum in 'bulk diamond' yields an overabundance of r-only 198 Pt that at face value seems more consistent with the neutron burst than with the separation model for the origin of heavy trace elements in the diamonds, although this conclusion is not firm given analytical uncertainties; (iii) if the Xe-H pattern was established by an unadulterated r-process, it must have been a strong variant of the main r-process, which possibly could also account for the new observations in platinum.
Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of 198Pt/195Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.