Pituitary growth hormone (GH) release and hepatic insulin-like growth factor-I (IGF-I) production increase after an injection of 17β-estradiol (E2) in ovariectomized dairy cattle. However, whether endogenous sexual steroid hormones also influence the hepatic GH receptor (GHR) signaling pathway during a physiological estrus cycle remains unclear. The aim of this study was to analyze the hepatic GHR signaling pathway during the luteal phase and after a period of increased E2 concentrations (after ovulation) as well as in 7 heifers before ovulation. Ovarian ultrasounds were performed daily during repeated physiological cycles (n = 56) of 30 Holstein Friesian heifers to determine ovulation [before ovulation (n = 7, bOv) and after ovulation 24-60 h after the appearance of estrus signs (n = 49, aOv)] and luteal phase (CLP; d 12 ± 1 after ovulation). Blood samples and liver biopsies were obtained, and blood concentrations of E2, P4, insulin-like growth factor (IGF)-I, IGF-II, and GH were measured. In the liver biopsies, we determined mRNA expression of the estrogen receptor α (ERα), GHR, Janus kinase 2 (JAK2), signal transducer and activator of transcription 5B (STAT5B), suppressor of cytokine signaling (SOCS)2 and 3, IGF-I, and IGF-II by quantitative reverse transcription-PCR. The concentration of E2 was higher bOv than aOv and CLP, as expected. The concentrations of IGF-I and GH were higher bOv and aOv compared with CLP. In contrast, concentrations of IGF-II were lower aOv compared with bOv and CLP. The mRNA expression of GHR was higher in liver biopsies obtained bOv compared with aOv and CLP. Notably, the expression of SOCS2 was higher bOv than aOv and in the CLP. Increased hepatic expression of SOCS2 during estrus was detectable when IGF-I concentrations were high; this result might indicate that SOCS2 expression attenuates the GHR signal transduction pathway during the phase of increased pituitary GH release. In conclusion, hepatic GHR and SOCS2 mRNA expression appeared to be promptly and sensitively regulated by increased E2 levels before ovulation of dairy heifers.
The bovine embryonic signal interferon-τ (IFN-τ) produced by the trophoblast is known to pass through the uterine fluid towards the endometrium and further into the maternal blood, where IFN-τ induces specific expression of interferon-stimulated gene expression (ISG), for example in peripheral leucocytes. In sheep, it was shown experimentally by administration of IFN-τ that ISG is also detectable in the liver. The objective was to test whether ISG can be detected in liver biopsy specimens from Holstein-Friesian heifers during early pregnancy. Liver biopsies were taken on day 18 from pregnant and non-pregnant heifers (n = 19), and the interferon-stimulated protein 15 kDa (ISG-15) and myxovirus-resistance protein-1 (MX-1) gene expression was detected. The expression of both MX-1 (p: 24.33 ± 7.40 vs np: 9.00 ± 4.02) and ISG-15 (p: 43.73 ± 23.22 vs 7.83 ± 3.63) was higher in pregnant compared to non-pregnant heifers (p < 0.05). In conclusion, pregnancy induced ISG-15 and MX-1 gene expression in the liver already at day 18 in cattle.
This study was conducted to determine if the main components of the somatotropic axis change during the early phase of pregnancy in the maternal blood system and whether differences exist on day 18 after pregnancy recognition by the maternal organism. Blood samples of pregnant heifers (Holstein Friesian; n = 10 after embryo transfer) were obtained on the day of ovulation (day 0), as well as on days 7, 14, 16 and 18 and during pregnant, non-pregnant and negative control cycles. The oncentrations of progesterone (P4), oestrogen, growth hormone (GH), insulin-like growth factor-1 and -2 (IGF1, -2) and IGF-binding protein-2, -3 and -4 (IGFBP2, -3, -4) were measured. The mRNA expressions of growth hormone receptor 1A, IGF1, IGF2, IGFBP2, IGFBP3 and IGFBP4 were detected using RT-qPCR in liver biopsy specimens (day 18). In all groups, total serum IGF1 decreased from day 0 to 16. Notably, IGFBP4 maternal blood concentrations were lower during pregnancy than during non-pregnant cycles and synchronized control cycles. It can be speculated that the lower IGFBP4 in maternal blood may result in an increase of free IGF1 for local action. Further studies regarding IGFBP4 concentration and healthy early pregnancy are warranted.
Insulin-like growth factors (IGFs) play a critical role in fetal growth, and components of the IGF system have been associated with fetal growth restriction in women. In human pregnancy, the proteolytic cleavage of insulin-like growth factor binding proteins (IGFBPs), particularly IGFBP-4, releases free IGF for respective action at the tissue level. The aim of the present study was to determine IGFBP-2, IGFBP-3, and IGFBP-4 concentrations by Western ligand blotting during pregnancy until day 100 in cows and to compare these concentrations with those of non-pregnant cows and cows undergoing embryonic/fetal mortality. Therefore, two study trials (I and II) and an in vitro study were conducted. In study I, 43 cows were not pregnant, 34 cows were pregnant, and 4 cows were undergoing fm. In study II, 500 cows were examined, and 7 cases of pregnancy loss between days 24–27 and 34–37 after artificial insemination (AI, late embryonic mortality; em) and 8 cases of pregnancy loss between days 34–37 and 54–57 after AI (late embryonic mortality and early fetal mortality; em/fm) were defined from the analyses of 30 pregnant and 20 non-pregnant cows randomly selected for insulin-like growth factor 1 and IGFBP analyses. In vitro serum from pregnant (n = 3) and non-pregnant (n = 3) cows spiked after incubation with recombinant human (rh) IGFBP-4 for 24 h, and IGFBP-4 levels were analyzed before and after incubation to detect proteolytic degradation. The IGFBP-2, -3, and -4 concentrations did not decline during early pregnancy in cows, while IGFBP-4 concentrations were comparable between pregnant and non-pregnant cows, irrespective of low proteolytic activity, which was also demonstrated in cows. Interestingly, cows with em or fm showed distinct IGFBP patterns. The IGFBP-2 and -3 concentrations were higher (P < 0.05) in cows with fm compared to pregnant. The IGFBP-4 levels were significantly higher in cows developing fm. Thus, distinct differences in the circulating IGFBP concentrations could be associated with late embryonic and early fetal losses in cattle.
BackgroundBefore the onset of fetal thyroid hormone production, the transplacental delivery of maternal thyroid hormones is necessary for embryonic and fetal development. Therefore, the adaptation of maternal thyroid hormone metabolism may be important for pregnancy success and embryo survival. The aims of this study were to determine the thyroid hormone levels during the early peri-implantation period until day 18 and on the day of ovulation, to determine whether pregnancy success is dependent on a “normothyroid status” and to determine whether physiological adaptations in maternal thyroid hormone metabolism occur, which may be necessary to provide sufficient amounts of biologically active T3 to support early pregnancy. Therefore, blood samples obtained on the day of ovulation (day 0) and days 14 and 18 of the Holstein–Friesian heifers (n = 10) during the respective pregnant, non-pregnant and negative control cycles were analyzed for thyroid-stimulating-hormone (TSH), thyroxine (T4) and triiodothyronine (T3). Liver biopsies (day 18) from pregnant and respective non-pregnant heifers were analyzed for mRNA expression of the most abundant hepatic thyroid hormone deiodinase (DIO1) by real time qPCR.ResultsAlthough liver DIO1 mRNA expression did not differ between the pregnant and non-pregnant heifers on day 18, the serum concentrations of TSH and T3 on day 18 were higher in non-pregnant heifers compared to pregnant heifers (P < 0.05). Moreover, T3 decreased between day 0 and 18 in pregnant heifers (P < 0.001).ConclusionsIn conclusion, no associations between thyroid hormone patterns on day 18 and pregnancy success were detected. During the early peri-implantation period, TSH and T3 may be affected by the pregnancy status because both TSH and T3 were lower on day 18 in pregnant heifers compared to non-pregnant dairy heifers. In further studies, the thyroid hormone axis should be evaluated throughout the entire gestation to confirm these data and identify other possible effects of pregnancy on the thyroid hormone axis in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.