Introduction: COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilisation and diffuse intravascular coagulation. Reports on the incidence of thrombotic complications are however not available. Methods: We evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction or systemic arterial embolism in all COVID-19 patients admitted to the ICU of 2 Dutch university hospitals and 1 Dutch teaching hospital. Results: We studied 184 ICU patients with proven COVID-19 pneumonia of whom 23 died (13%), 22 were discharged alive (12%) and 139 (76%) were still on the ICU on April 5th 2020. All patients received at least standard doses thromboprophylaxis. The cumulative incidence of the composite outcome was 31% (95%CI 20-41), of which CTPA and/or ultrasonography confirmed VTE in 27% (95%CI 17-37%) and arterial thrombotic events in 3.7% (95%CI 0-8.2%). PE was the most frequent thrombotic complication (n = 25, 81%). Age (adjusted hazard ratio (aHR) 1.05/per year, 95%CI 1.004-1.01) and coagulopathy, defined as spontaneous prolongation of the prothrombin time > 3 s or activated partial thromboplastin time > 5 s (aHR 4.1, 95%CI 1.9-9.1), were independent predictors of thrombotic complications. Conclusion:The 31% incidence of thrombotic complications in ICU patients with COVID-19 infections is remarkably high. Our findings reinforce the recommendation to strictly apply pharmacological thrombosis prophylaxis in all COVID-19 patients admitted to the ICU, and are strongly suggestive of increasing the prophylaxis towards high-prophylactic doses, even in the absence of randomized evidence.
We recently reported a high cumulative incidence of thrombotic complications in critically ill patients with COVID-19 admitted to the intensive care units (ICUs) of three Dutch hospitals. In answering questions raised regarding our study, we updated our database and repeated all analyses. Methods: We re-evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction and/or systemic arterial embolism in all COVID-19 patients admitted to the ICUs of 2 Dutch university hospitals and 1 Dutch teaching hospital from ICU admission to death, ICU discharge or April 22nd 2020, whichever came first. Results: We studied the same 184 ICU patients as reported on previously, of whom a total of 41 died (22%) and 78 were discharged alive (43%). The median follow-up duration increased from 7 to 14 days. All patients received pharmacological thromboprophylaxis. The cumulative incidence of the composite outcome, adjusted for competing risk of death, was 49% (95% confidence interval [CI] 41-57%). The majority of thrombotic events were PE (65/75; 87%). In the competing risk model, chronic anticoagulation therapy at admission was associated with a lower risk of the composite outcome (Hazard Ratio [HR] 0.29, 95%CI 0.091-0.92). Patients diagnosed with thrombotic complications were at higher risk of all-cause death (HR 5.4;. Use of therapeutic anticoagulation was not associated with all-cause death (HR 0.79, 95%CI 0.35-1.8). Conclusion:In this updated analysis, we confirm the very high cumulative incidence of thrombotic complications in critically ill patients with COVID-19 pneumonia.
Background Whereas accumulating studies on COVID‐19 patients report high incidences of thrombotic complications, large studies on clinically relevant thrombosis in patients with other respiratory tract infections are lacking. How this high risk in COVID‐19 patients compares to those observed in hospitalized patients with other viral pneumonias such as influenza is unknown. Objectives To assess the incidence of venous and arterial thrombotic complications in hospitalized influenza patients as opposed to that observed in hospitalized COVID‐19 patients. Methods Retrospective cohort study; we used data from Statistics Netherlands (study period: 2018) on thrombotic complications in hospitalized influenza patients. In parallel, we assessed the cumulative incidence of thrombotic complications – adjusted for competing risk of death ‐ in patients with COVID‐19 in three Dutch hospitals (February 24th ‐ April 26th 2020). Results Of the 13.217 hospitalized influenza patients, 437 (3.3%) were diagnosed with thrombotic complications, versus 66 (11%) of the 579 hospitalized COVID‐19 patients. The 30‐day cumulative incidence of any thrombotic complication in influenza was 11% (95%CI 9.4‐12) versus 25% (95%CI 18‐32) in COVID‐19. For venous thrombotic complications (VTE) and arterial thrombotic complications alone, these numbers were respectively 3.6% (95%CI 2.7‐4.6) and 7.5% (95%CI 6.3‐8.8) in influenza versus 23% (95%CI 16‐29) and 4.4% (95%CI 1.9‐8.8) in COVID‐19. Conclusions The incidence of thrombotic complications in hospitalized influenza patients was lower than in hospitalized COVID‐19 patients. This difference was mainly driven by a high risk of VTE complications in the COVID‐19 patients admitted to ICU. Remarkably, influenza patients were more often diagnosed with arterial thrombotic complications.
Background Prediction of successful discontinuation of continuous renal replacement therapy (CRRT) might reduce complications of over- and under-treatment. The aim of this study was to identify renal and non-renal predictors of short-term successful discontinuation of CRRT in patients in whom CRRT was stopped because renal recovery was expected and who were still in the Intensive Care Unit (ICU) at day 2 after stop CRRT. Methods Prospective multicentre observational study in 92 patients alive after discontinuation of CRRT for acute kidney injury (AKI), still in the ICU and free from renal replacement therapy (RRT) at day 2 after discontinuation. Successful discontinuation was defined as alive and free from RRT at day 7 after stop CRRT. Urinary neutrophil gelatinase-associated lipocalin (NGAL) and clinical variables were collected. Logistic regression and Receiver Operator Characteristic (ROC) curve analysis were performed to determine the best predictive and discriminative variables. Results Discontinuation of CRRT was successful in 61/92 patients (66%). Patients with successful discontinuation of CRRT had higher day 2 urine output, better renal function indicated by higher creatinine clearance (6-h) or lower creatinine ratio (day 2/day 0), less often vasopressors, lower urinary NGAL, shorter duration of CRRT and lower cumulative fluid balance (day 0–2). In multivariate analysis renal function determined by creatinine clearance (Odds Ratio (OR) 1.066, 95% confidence interval (CI) 1.022–1.111, p = 0.003) or by creatinine ratio (day 2/day 0) (OR 0.149, 95% CI 0.037–0.583, p = 0.006) and non-renal sequential organ failure assessment (SOFA) score (OR 0.822, 95% CI 0.678–0.996, p = 0.045) were independently associated with successful discontinuation of CRRT. The area under the curve of creatinine clearance to predict successful discontinuation was 0.791, optimal cut-off of 11 ml/min (95% CI 6–16 ml/min) and of creatinine ratio 0.819 (95% CI 0.732–0.907) optimal cut-off of 1.41 (95% CI 1.27–1.59). Conclusion In this prospective multicentre study we found higher creatinine clearance or lower creatinine ratio as best predictors of short-term successful discontinuation of CRRT, with a creatinine ratio of 1.41 (95% CI 1.27–1.59) as optimal cut-off. This study provides a practical bedside tool for clinical decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.