Electrochemical characteristics of supercapacitors built from multiwalled carbon nanotubes electrodes have been investigated and correlated with microtexture and elemental composition of the materials. Capacitance has been estimated by cyclovoltammetry at different scan rates from 1 to 10 mV/s, galvanostatic discharge, and impedance spectroscopy in the frequency range from 100 kHz to 1 mHz. The presence of mesopores due to the central canal and/or entanglement is at the origin of an easy accessibility of the ions to the electrode/electrolyte interface for charging the electrical double layer. Pure electrostatic attraction of ions as well as quick pseudofaradaic reactions have been detected upon varying surface functionality. The values of specific capacitance varied from 4 to 135 F/g, depending on the type of nanotubes or/and their posttreatments. Even with moderate specific surface area (below 470 m2/g), due to their accessible mesopores, multiwalled carbon nanotubes represent attractive materials for supercapacitors as compared to the best activated carbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.