Early blight, caused by Alternaria solani, along with brown spot, caused by A. alternata, have the potential to reduce quality and yield in potato production globally. Prior to this study, the incidence, disease impact, and fungicide resistance attributes of A. alternata in Wisconsin were poorly understood. Potato pathogens were isolated from foliar lesions at three commercial locations in Wisconsin in 2012 and 2017 and were initially morphologically identified as A. solani (n = 33) and A. alternata (n = 40). Identifications were further corroborated with the phylogenetic analysis of the internal transcribed spacer (ITS), translation elongation factor 1 (TEF1), gapdh, Alt a 1, and OPA10-2. A multigene phylogeny of ITS, TEF1, gapdh, and Alt a 1 showed five genotypes of A. alternata and one single genotype of A. solani. We demonstrated that the A. alternata isolates were virulent on potato cultivars Russet Burbank (P < 0.013) and Atlantic (P < 0.0073), though they caused less disease than A. solani (P < 0.0001 and P < 0.0001, respectively). A. alternata caused little disease on the breeding line 24-24-12 (P = 0.9929), and A. solani caused fewer disease symptoms on 24-24-12 than on Russet Burbank (P < 0.0001) or Atlantic (P < 0.0001). Breeding line 24-24-12 may be a promising source of potential resistance for the two diseases. There was no significant difference in virulence of different A. alternata genotypes, and no significant difference in virulence or genotype clustering among isolates from the three locations. Isolates of A. alternata that induced chlorosis caused larger lesion areas than isolates that did not in Russet Burbank (P < 0.0001), Atlantic (P < 0.0001), and 24-24-12 (P = 0.0365). There was no significant difference in virulence between quinone outside inhibitor (QoI)-sensitive and QoI-resistant isolates of A. alternata. This study enhanced our understanding of potato early blight and brown spot in Wisconsin, and suggested that A. alternata in addition to A. solani should be carefully monitored and possibly uniquely managed in order to achieve overall disease control.
[1] Earthquake locations provide a fundamental tool for seismological investigations. While dense seismic networks can provide robust locations, accuracy and precision of these locations suffer outside dense networks. This is particularly true in offshore areas, where location analysis relies heavily on distant seismic observations. We present a method for estimating precise relative seismic source epicentroid locations using surface waves. Several reasons, including lower velocities and strength of the signal at distance, make use of surface waves for event location appealing. We focus on the Panama Fracture Zone region and relocate 81 strike-slip earthquakes to produce tectonically consistent epicentroid locations. The resulting pattern of earthquakes more clearly delineates recently active regional structures than original body-wave locations. The mean shift between the US Geological Survey National Earthquake Information Center epicenter and our epicentroids is about 14 km (the median is about 11 km), and typical origin time changes are generally less than AE2 s. We find that north of 6.5 N, the plate boundary motion is split across two roughly north-south striking structures, the Panama and Balboa Fracture zones. For the last 36 years, slip along these two structures roughly matches slip along the Panama Fracture Zone to the south (from 4.5 N to 6.25 N), but the Balboa Fracture zone has roughly three times the moment than the northern Panama Fracture Zone. Our analyses show that observed Rayleigh-wave signal-to-noise ratios for moderate-to-large shallow earthquakes are suitable for applying the procedure and that Rayleigh-wave observations form a self-consistent set of constraints on the relative location of earthquake centroids.Citation: Cleveland, K. M., and C. J. Ammon (2013), Precise relative earthquake location using surface waves,
We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.Online Material: Supplementary description and formulation of uncertainty, and tables of relative magnitudes.
Double‐difference methods applied to cross‐correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere‐Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike‐slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faulting earthquakes. Our results show that at least the moderate‐magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere‐Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross‐correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. The observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.
Seismic observations of underground nuclear explosions provide crucial data on source yield and depth that cannot easily be estimated from other geophysical methods. However, it is difficult to obtain reliable yield estimates for test sites for which we do not have direct seismic calibration experiments. To obtain source information from uncalibrated sites and paths, local and regional seismic records of six, proximal, declared underground nuclear explosions in North Korea are used to compute spectral ratios of narrow‐band waveform envelopes of body‐wave coda that remove path and site effects to reveal precise, relative source moment. The yields of these explosions are obtained from the observed source ratios by simultaneously fitting the classical source model of Mueller and Murphy (1971), https://doi.org/10.1785/bssa0610061675 to all event pairs. The source model provides an impressive fit to the observations considering that the P phase coda derived source spectral ratios did not require a prior knowledge of the source or regionally calibrated corrections to be applied to the data. However, the observed corner frequencies from S wave coda spectral ratios are lower than the source model predictions, but are well fit by models calculated using the corner frequency consistent with the Fisk conjecture. The results presented here provide novel constraints on the spectral distributions of the energy radiated by the sources of the DPRK test series, and allows for an independent evaluation of existing estimated source model parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.