We have demonstrated recently that calreticulin, an intracellular calcium-binding protein, can interact with the alpha-subunits of integrin receptors via the highly conserved KXGFFKR amino acid sequence present in the cytoplasmic domains of all integrin alpha-subunits (Rojiani et al. (1991) Biochemistry 30, 9859–9866). Here we demonstrate that calreticulin can be co-localized by immunofluorescence as well as co-purified with integrins, that recombinant calreticulin can also interact with integrins, and that the interaction occurs predominantly via the N-domain of calreticulin, to a much lesser extent with the C-domain, but not at all with the proline-rich P-domain. To demonstrate a physiological role for the interaction of calreticulin with integrins, calreticulin expression was downregulated by treating cells with antisense oligonucleotides designed to inhibit the initiation of translation of calreticulin. Antisense oligonucleotides, but not sense or non-sense oligonucleotides, inhibited attachment and spreading of cells cultured in the presence of fetal bovine serum, and also of cells plated on individual extracellular matrix substrates in the absence of serum. The antisense oligonucleotide inhibited cell proliferation of anchorage-dependent cells slightly, but there was no effect on cell viability. The effect on cell attachment was similar to that achieved by treating cells with an antisense oligonucleotide designed to inhibit translation of the integrin alpha 3 subunit, which resulted in the inhibition of cell attachment to alpha 3 beta 1-specific substrates. The effect of the antisense calreticulin oligonucleotide on cell attachment was demonstrated to be integrin-mediated since antisense calreticulin treatment of Jurkat cells abrogated the stimulation of collagen cell attachment achieved by attachment-stimulating signalling anti-alpha 2 (JBS2) and anti-beta 1 (21C8) antibodies. The oligonucleotides did not affect the rate of cell proliferation of these cells. These results demonstrate a fundamental role of calreticulin in cell-extracellular matrix interactions.
Small nuclear ribonucleoproteins (snRNPs) play an integral role in the processing of pre-mRNA in eukaryotic nuclei. snRNPs often occur in a speckled intranuclear distribution, together with the non-snRNP splicing factor SC-35. snRNPs have also been shown to be associated with actin in the nuclear matrix, suggesting that both actin and snRNPs may be involved in the processing and transport of transcripts. The work reported here was undertaken to compare the spatial relationship of snRNPs, SC-35, and intranuclear actin in neuronal and non-neuronal cell types. In undifferentiated PC12 cells and in non-neuronal cells growing in association with dorsal root ganglion neurons, confocal immunocytochemistry revealed a typical, speckled distribution of snRNP aggregates, which colocalized with the SC-35 splicing factor. In contrast, a unique snRNP distribution was observed in dorsal root ganglion neurons in vitro and in PC12 cells differentiated by nerve growth factor. In nuclei of these cells, snRNPs were predominantly located at the periphery where they formed a spherical shell apposed to the nuclear envelope. Ultrastructural immunogold labelling of snRNPs in dorsal root ganglion neurons in vitro confirmed this distribution. In contrast, SC-35 remained distributed in a speckled pattern throughout nuclei of dorsal root ganglion neurons and PC12 cells, even in cases where snRNPs were almost exclusively positioned at the nuclear periphery. In non-neuronal cells in dorsal root ganglion cultures and in undifferentiated PC12 cells, snRNP aggregates were frequently associated with actin aggregates, as determined by Nearest Neighbor Analyses. In PC12 cells, this spatial relationship was altered during nerve growth factor-induced differentiation, prior to the time at which these cells showed morphological evidence of differentiation. Specifically, Nearest Neighbor Analyses between snRNP and actin aggregates in PC12 cells exposed to nerve growth factor for 4 hours revealed that snRNP and actin aggregates exhibited a closer association than in undifferentiated cells. These results suggest that sites of pre-mRNA processing and transcription may differ between cell types, and that the functions of snRNPs and actin within interphase nuclei may be related. The results also indicate that the distribution of snRNPs is dynamic and that it may depend upon the functional state of the cell as well as upon its state of differentiation.
Neuronal chromatin moves, in a saltatory and periodic manner, within the 3-dimensional (3-D) space of interphase nuclei in vitro. This is generally known as nuclear rotation (NR) which has been proposed to function, during differentiation, in the transposition of specific chromatin domains into a cytotypic chromosome pattern, a pattern which, in part, may also be related to the functional state of the cell. Exposure of neurons in vitro to nerve growth factor or to neurotransmitters results in altered gene expression, in altered rates of NR, as well as in a reorganization of chromosome patterns. Moreover, long term potentiation, induced in neurons in hippocampal slices, reduces the number of detectable satellite DNA signals, possibly by increased clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.