Although coevolution is acknowledged to occur in nature, coevolutionary patterns in symbioses not involving species-to-species relationships are poorly understood. Mycorrhizal plants are thought to be too generalist to coevolve with their symbiotic fungi; yet some plants, including some orchids, exhibit strikingly narrow mycorrhizal specificity. Here, we assess the evolutionary history of mycorrhizal specificity in the lady's slipper orchid genus, Cypripedium. We sampled 90 populations of 15 taxa across three continents, using DNA methods to identify fungal symbionts and quantify mycorrhizal specificity. We assessed phylogenetic relationships among sampled Cypripedium taxa, onto which we mapped mycorrhizal specificity. Cypripedium taxa associated almost exclusively with fungi within family Tulasnellaceae. Ancestral specificity appears to have been narrow, followed by a broadening after the divergence of C. debile. Specificity then narrowed, resulting in strikingly narrow specificity in most of the taxa in this study, with
Hand-pollination followed by bagging treatment of ovaries with aluminium foil was effective for insect control during fruit development, and successfully yielded capsules. Of the capsules, 74.5 % survived to full maturity. The highest frequency (39.8 %) of seed germination was obtained with seeds harvested 70 d after pollination. The frequency declined with progress of seed maturity on the mother plant. Minimal germination was observed with seeds harvested 100 d or later after pollination. Histological observation suggests that accumulation of such substances as lignin in the inner integument surrounding the embryo during seed maturation plays an important role in induction of dormancy.
Fungal partners in Cymbidium have shifted from saprobic to ectomycorrhizal fungi via a phase of coexistence of both nutritional types of fungi. These three phases correspond to the evolution from autotrophy to mycoheterotrophy via mixotrophy in Cymbidium. We demonstrate that shifts in mycorrhizal fungi correlate with the evolution of nutritional modes in plants. Furthermore, gradual shifts in fungal partners through a phase of coexistence of different types of mycobionts may play a crucial role in the evolution of mycoheterotrophic plants.
Morphogenic calli were obtained efficiently from ab initio cultures of isolated microspores in eggplant. Initial culture of freshly isolated microspores in sucrose-free medium at high temperature (35°C) for 3 d was a prerequisite for callus induction. The microspores were re-cultured in modified NLN medium containing 2% sucrose and phytohormones (NAA 0.5 mg l(-1), BA 0.5 mg l(-1)) in the dark. After 4 weeks of re-culture, small calli derived from microspores were transferred to MS medium containing 4 mg l(-1) zeatin and 0.2 mg l(-1) IAA for shoot regeneration. The ploidy of 12 randomly selected regenerants was assessed by chromosome counts in root tips. Only one of the regenerants was haploid, 7 were diploid, 3 were triploid and one was tetraploid. The diploids set seeds after self-pollination and showed no segregation for morphological traits in the progeny, suggesting that they were spontaneously doubled haploids.
In this study we established reliable methods for conservation of seeds of Phaius tankervilleae as an orchid genetic resource. The seeds, which were dehydrated to 5% water content and preserved at 4°C, showed no decrease in viability and germinability after three months. After storage for six months, however, the seeds showed a drastic decrease in germinability, even though survival rate was high. For long-term preservation of seeds of P. tankervilleae, cryopreservation is applied to the freshly harvested seeds. When the seeds were cryopreserved by the vitrification method for up to 12 months there was no apparent deterioration effect of storage time. These results indicate that cryopreservation by the vitrification method is useful for long-term conservation of P. tankervilleae seeds, which are difficult to preserve for more than three months under dry and low-temperature conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.