Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.
The resistance of Co–Al2O3–Si tunnel contacts for electrical spin injection from a ferromagnet into silicon is investigated. The contacts form a substantial Schottky barrier, 0.7eV, which plays a dominant role in the electronic transport. On Si with a low doping concentration (∼1015cm−3), the contact resistance is affected by the Al2O3 tunnel barrier only in the forward bias. In the reverse bias (the spin injection condition), the Schottky barrier results in a very high contact resistance, ∼102Ωm2. While the contact resistance is improved to ∼10−2Ωm2 using Si with a high doping concentration (∼5×1019cm−3), it is still about five to six orders of magnitude higher than the value needed for resistance matching to silicon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.