Bathing in the Blue Lagoon, a specific geothermal biotope in Iceland has been known for many years to be beneficial for human skin in general and for patients with psoriasis and atopic dermatitis in particular. The scientific rationale for this empirical observation, however has remained elusive. We now report that extracts prepared from silica mud and two different microalgae species derived from the Blue Lagoon are capable of inducing involucrin, loricrin, transglutaminase-1 and filaggrin gene expression in primary human epidermal keratinocytes. The same extracts also affects primary human dermal fibroblasts, because extracts from silica mud and one type of algae inhibited UVA radiation-induced upregulation of matrix metalloproteinase-1 expression and both algae, as well as silica mud extracts induced collagen 1A1 and 1A2 gene expression in this cell type. These effects were not restricted to the in vitro situation because topical treatment of healthy human skin (n = 20) with a galenic formulation containing all three extracts induced identical gene regulatory effects in vivo, which were associated with a significant reduction of transepidermal water loss. In aggregate, these results suggest that the bioactives in Blue Lagoon have the capacity to improve skin barrier function and to prevent premature skin ageing. These observations explain at least some of the beneficial effects of bathing in the Blue Lagoon and provide a scientific basis for the use of Blue Lagoon extracts in cosmetic and/or medical products.
Topical urea preparations containing urea have been used successfully to improve the barrier function of the skin. We investigated whether the efficacy of an urea-containing topical preparation could be improved by the addition of vitamins and ceramides. For this an intra-individual comparative study was conducted on 10 subjects with healthy skin. The application of the combination preparation containing urea, vitamins and ceramides for 2 weeks was significantly superior to the urea-only preparation in respect to reduction of transepidermal water loss and skin hydration levels. This improved efficacy was associated with a stronger up-regulation of the transcriptional expression of differentiation genes in keratinocytes in the treated skin areas. While both preparations caused an increased expression of the genes encoding transglutaminase-1, involucrin, loricrin and filaggrin, this increase was significantly greater in those skin areas treated with the combination preparation. This study indicates that the efficacy of topical preparations containing urea can be enhanced by the incorporation of ceramides and vitamins.
Photoaged skin is characterized by a decrease of dermal collagen fibers, resulting from an increased breakdown and a diminished de novo synthesis. The increased breakdown results from an increased expression of matrix metalloproteinases (MMPs). The main building blocks involved in de novo synthesis of collagen fibers are collagen 1A1 and 1A2, the expression of which is reduced in photoaged skin. We studied the effect of topical application of vitamins, phytosterols and ceramides on UV-induced up-regulation of the expression of MMP-1 and on UV-induced down-regulation of COL1A1 and COL1A2. The study was conducted with 10 subjects with healthy skin who were comparatively treated for 10 days with (i) a basic preparation containing jojoba oil, (ii) the basic preparation supplemented with vitamins, (iii) the basic preparation supplemented with phytosterols and ceramides, and (iv) the basic preparation supplemented with vitamins, phytosterols and ceramides. All four preparations inhibited the UV induced up-regulation of MMP-1. Neither the basic product nor that supplemented with vitamins inhibited down-regulation of COL1A1 and COL1A2, but addition of phytosterols and ceramides caused a decreased down-regulation of the expression of these genes. Our results indicate that phytosterols and ceramides are effective in blocking the reduced collagen synthesis after UV irradiation and even stimulating synthesis. They may be useful additions to anti-aging products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.