Orthogonal time frequency space (OTFS) modulation is a 2-dimensional (2D) modulation scheme designed in the delay-Doppler domain, unlike traditional modulation schemes which are designed in the time-frequency domain. Through a series of 2D transformations, OTFS converts a doubly-dispersive channel into an almost non-fading channel in the delay-Doppler domain. In this domain, each symbol in a frame experiences an almost constant fade, thus achieving significant performance gains over existing modulation schemes such as OFDM. The sparse delay-Doppler impulse response which reflects the actual physical geometry of the wireless channel enables efficient channel estimation, especially in high-Doppler fading channels. This paper investigates OTFS from a signal detection and channel estimation perspective, and proposes a Markov chain Monte-Carlo sampling based detection scheme and a pseudo-random noise (PN) pilot based channel estimation scheme in the delay-Doppler domain.
The Non-Orthogonal Multiple Access (NOMA) emerged as a latest solution to demand of high data rated with excellent reliability and robustness. In this paper, the performance analysis of the NOMA under fading channel is presented with emphasis on error rate calculations. In addition, the focus is on exploring the impact of various modulation techniques like binary phase shift keying (BPSK), Quadrature Phase Shift Keying (QPSK) and Generalized Space Shift Keying (GSSK). The simulation study has been performed on MATLAB tool and results are analyzed efficiently in the metrics of NOMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.