New 1-ethyl-3-methylimidazolium (EMI) salts [EMI][C(CN)3] and [EMI][Ag(CN)2] were prepared and characterized. The C(CN)3 salt has a melting point at -11 degrees C and shows a low viscosity (18 cP) and a high ionic conductivity (1.8 x 10(-2) S cm(-1)) at room temperature. This conductivity is less than that of [EMI][N(CN)2] salt (2.7 x 10(-2) S cm(-1)), possibly due to the larger molecular weight of the anion. The first EMI salt containing Ag(I) complexes [EMI][Ag(CN)2] has a higher melting point of 73 degrees C. In the crystal, the C-H...pi interionic interactions between cations construct zigzag chains in the cationic two-dimensional layer. Close Ag..Ag interionic contacts of 3.226(1) A were observed in the one-dimensional anionic chain, and the relatively high melting point among the EMI salts with a monoanion appears to be governed essentially by these direct Ag...Ag interactions.
The negative co-stimulatory receptor, programmed cell death 1 (PD-1), is induced on activated T cells and delivers inhibitory signals upon engagement with its ligands PD-L1 and PD-L2, which are expressed on various somatic cells and certain cancers. Accumulating evidence suggests that interfering with the PD-1-PD-L1 interaction may result in the restoration of defective T cell functions in cancer and chronic viral infection. Herein, we established procedures to produce large amounts of renatured recombinant extracellular domain proteins of mouse PD-1 (mPD-1) and PD-L1. While monomeric mPD-1 and mouse PD-L1 (mPD-L1) only marginally interacted with the cells expressing their counterpart proteins, their tetramerization markedly enhanced the affinity with the K(d) of mPD-L1 tetramer being nearly 100-fold lower than that of the corresponding monomer. The affinity of mPD-L1 tetramer was even higher than a high-affinity anti-PD-1 mAb, and it efficiently inhibited the binding of mPD-L1/Fc-chimeric protein to mPD-1(+) cells. Functionally, mPD-L1 tetramer significantly enhanced the proliferative responses as well as the cytotoxic activity of T cells against specific target cells in vitro. The results suggest that oligomeric PD-L1 extracellular domains may provide a potential means to restore T cell functions in cancer and viral infection in humans.
Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from Mendel's peas not only because many students do not understand that plants are organisms, but also because human biology contains important social and health issues. Therefore, we have developed a teaching program for the introduction to genome science, whose subjects are focused on the human genome. This program comprises mixed multimedia presentations: a large poster with illustrations and text on the human genome (a human genome map for every home), and animations on the basics of genome science. We implemented and assessed this program at four high schools. Our results indicate that students felt that they learned about the human genome from the program and some increases in students' understanding were observed with longer exposure to the mixed multimedia presentations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.