Little is known about the effect of retail light-emitting diode (LED) exposure on consumer acceptance of milk. The study objective was to determine effects of fluorescent and LED lighting under retail storage conditions on consumer acceptance of milk. Consumer acceptance of milk stored under retail conditions was determined through sensory evaluation (2 studies; n=150+ each) and analytical measures (dissolved oxygen, secondary oxidation products, riboflavin retention). Study 1 evaluated milk stored in high-density polyethylene (HDPE) packages for 4h under LED light (960 lx). Commercially available HDPE package treatments included translucent HDPE (most commonly used), white HDPE [low concentration (1.3%) TiO], and yellow HDPE; in addition, HDPE with a higher TiO concentration (high white; 4.9% TiO) and a foil-wrapped translucent HDPE (control) were tested. Translucent and control packages also were tested under fluorescent light. Study 2 evaluated polyethylene terephthalate (PET) packages for 4h under fluorescent and LED light (1,460 lx). The PET packaging included 2 treatments (medium, 4.0% TiO; high, 6.6% TiO) as well as translucent HDPE (exposed to fluorescent), clear PET (fluorescent and LED), and light-protected control. Overall mean acceptability of milk ranged from "like slightly" to "like moderately" with significantly lower acceptability for milk exposed to fluorescent light. Milk in HDPE and PET packages had comparable overall acceptability scores when exposed to LED light. Only the fluorescent light condition (both PET and HDPE) diminished overall acceptability. Fluorescent light exposure negatively influenced flavor with significant penalty (2.0-2.5 integers) to overall acceptability of milk in translucent HDPE and clear PET. The LED also diminished aftertaste of milk packaged in translucent HDPE. Changes in dissolved oxygen content, as an indication of oxidation, supported the observed differences in consumer acceptance of milk stored under fluorescent and LED light. Consumers like the flavor of fresh milk, which can be protected by selecting appropriate packaging that blocks detrimental light wavelengths.
Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted‐steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L
*) and more red (higher a*) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b
*; lower L
*) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.