The ground-state geometries and excited singlet and lowest triplet energies of polyacenes from benzene through nonacene are predicted with B3LYP/6-31G* calculations and compared to experimental data where available. The results are compared to these data for cyclacenes and polyenes. The polyacenes and cyclacenes have geometries consisting of two fully delocalized nonalternating ribbons joined by relatively long bonds. Polyacenes are predicted to have smaller band gaps than the corresponding polyenes and triplet ground states for nine or more benzene rings. The fully delocalized nonalternating nature of polyacenes differs from the bond alternation resulting from Peierls distortion in polyenes. The differences are rationalized in terms of a simple MO model, and the results are compared to extensive prior theoretical work in the literature. Predictions about the electronic structure of analogues containing polyacene units are made.
The mechanism and origins of Z-selectivity in olefin metathesis with chelated Ru catalysts were explored using density functional theory. The olefin approaches from the "side" position of the chelated Ru catalysts, in contrast to reactions with previous unchelated Ru catalysts that favor the bottom-bound pathway. Steric repulsions between the substituents on the olefin and the N-substituent on the N-heterocyclic carbene ligand lead to highly selective formation of the Z product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.