Several recent efforts in radiation biology community worldwide have amassed records and archival tissues from animals exposed to different radionuclides and external beam irradiation. In most cases, these samples come from life-long studies on large animal populations conducted in national laboratories and equivalent institutions throughout Europe, North America, and Japan. While many of these tissues were used for histopathological analyses, much more information may still be obtained from these samples. A new technique suitable for imaging of these tissues is X-Ray Fluorescence Microscopy (XFM). Following development of third generation synchrotrons, XFM has emerged as an ideal technique for study of metal content, speciation, and localization in cells, tissues and organs. Here we review some of the recent XFM literature pertinent to tissue sample studies and present examples of XFM data obtained from tissue sections of beagle dog samples which show that the quality of archival tissues allows XFM investigation.
This review briefly describes techniques and basic results of experimental investigations in mice and rats on metabolism, dosimetry, and radiobiological effects of tritium oxide and some tritiated biogenic compounds (glucose, amino acids, and nucleosides) during the last 10 to 15 years in Russia. The content of water in tissue cells of mammals is shown to be 15 to 40% less than in whole tissue. The kinetics of tritium incorporation from oxide (HTO) and its retention in DNA of hemopoietic tissues were studied. The contribution of bound tritium to dose strongly depends on the chemical form of tritium and reaches 90% when labeled L-lysine is injected. Specific features of the action of HTO on hemopoietic tissue were investigated in tests of damage and repair of DNA, induction of chromosome aberrations in cells, content of nucleic acids, kinetics of cell populations, immunity parameters, carcinogenesis, decrease of life span, induction of dominant lethal mutations in germ cells in male mice, and reciprocal translocations in mouse spermatogonia. According to these tests, the radiobiological effects of tritium beta radiation in the form of oxide is 2 to 6 times higher than for gamma radiation of 137Cs. The frequency of dominant lethal mutations induced by labeled lysine, thymidine, and deoxycytidine is 3 to 12 times higher than those induced by equal HTO activity. The results of these investigations are used to standardize HTO and the various biogenic compounds of tritium, improve techniques of indirect dosimetry, provide medical aid to personnel, and estimate population risk.
Radiation-induced lung cancer risk is currently estimated based on epidemiological data from populations exposed either to relatively uniform, low-LET radiation, or from uranium miners who inhaled radon and its progeny. Inhaled alpha-emitting radionuclides (e.g. Pu and Am) produce distinctive dose patterns that may not be adequately modelled at present. Thus the distribution of Pu is being measured in formalin-fixed autopsy lung tissue from former workers at the Mayak Production Association, and which is maintained in a tissue archive at SUBI. Lungs are sampled using contemporary stereological techniques and Pu particle activities and locations are determined using quantitative autoradiography and morphological identification of lung structures. To date, > 80% of Pu particles have been observed in parenchymal lung tissues with higher concentrations being found in scar tissue. Concentrations of Pu particles in conducting airways are uniformly low, thus indicating that long-term-retained Pu particles are non-uniformly distributed in human lung, mostly in the parenchyma.
A repository of bio-specimens that includes organs from 700 deceased workers employed at the first nuclear weapons facility "Mayak" and donations of blood, buccal cells, and tissues removed at the time of surgery and/or biopsy from the members of the Mayak cohort undergoing medical treatment or diagnostic procedures has been established at the Southern Ural Biophysics Institute, in Ozyorsk, Russian Federation. The autopsied tissues include formaline-preserved organs, paraffin blocks, and histology slides. For all, occupational, dosimetry, and detailed medical information is available. For 359 individuals, information on malignant tumors, i.e., lung (171), stomach (51), liver (28), and intestine (19), as well as 32 cases of leukemia, are available. External gamma exposures are known for 95% of the 700 autopsies, of whom 560 were exposed to protracted doses exceeding 0.5 Gy, with known maximum annual doses ranging from 0.01-0.5 Gy for about 46%, and annual doses exceeding 0.5 Gy for 48%. Plutonium body burden is known for 73%, of which 40% had body burden greater than 1.5 kBq, and 15% of individuals had body burdens greater than 11.85 kBq. Newly collected specimens include frozen lymphocytes, EBV-immortalized B-cells, frozen erythrocytes, and DNA as well as frozen tumors. Donations were obtained to date from more than 1,600 individuals. For these donors external doses of exposure exceeded 0.5 Gy for 83%, and plutonium body burden exceeded 1.48 kBq for 30%. A Web site describing the Repository that also includes forms for tissue requests can be accessed at http://www.subi.ru/RHTR.
The objective of this research was quantitative assessment of serum and membrane regulatory proteins in blood from nuclear workers as markers of radiation-induced alterations in immune homeostasis in the late period after protracted exposure of nuclear workers with different doses. The effector and regulatory lymphocytes were measured using a flow cytofluorometer in workers from the main facilities of the Mayak PA (aged ∼60 y up to 80 y) in the late period after combined exposure to external gamma-rays and internal alpha-radiation from incorporated 239Pu. The control group included non-occupationally exposed members of the Ozyorsk population matched by gender and age to the group of Mayak workers. Thirty serum proteins involved in regulation of immune homeostasis, such as growth factors, multifunctional interleukins, pro- and anti-inflammatory cytokines, and their receptors, were measured using ELISA in blood serum specimens from the Radiobiology Human Tissue Repository. The dosimetry estimates were obtained using Doses-2005. The correlation analysis revealed a statistically significant direct relationship of T-killers and plutonium body burden and a decreasing level of T-helpers with accumulated external dose in exposed individuals. There were differences in expression of membrane markers in young regulatory cells (double null T-lymphocytes, NKT-lymphocytes, regulatory T-cells, and an increase of activated forms of T-lymphocytes), which indicated an active role of regulatory cells in maintaining immune homeostasis in terms of protracted exposure. The assessment of regulatory proteins in blood indicated that growth factors (EGF, TGF-β1, PDGF), multifunctional interleukins (IL-17A, IL-18), and pro-inflammatory cytokines (IL-1β and INF-γ) could be potential markers of radiation-induced alterations in protein status. An imbalance of pro- and antiinflammatory proteins in blood and variations of protein profiles at the lower exposure levels (gamma-ray dose <1 Gy, plutonium body burden <0.74 kBq) in the late period after protracted exposure were less pronounced than at the higher exposure levels, which was probably explained by compensatory-adaptive responses in the late period among senile individuals with polypathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.