In several applications, such as scene interpretation and reconstruction, precise depth measurement from images is a significant challenge. Current depth estimate techniques frequently provide fuzzy, low-resolution estimates. With the use of transfer learning, this research executes a convolutional neural network for generating a high-resolution depth map from a single RGB image. With a typical encoder-decoder architecture, when initializing the encoder, we use features extracted from high-performing pre-trained networks, as well as augmentation and training procedures that lead to more accurate outcomes. We demonstrate how, even with a very basic decoder, our approach can provide complete high-resolution depth maps. A wide number of deep learning approaches have recently been presented, and they have showed significant promise in dealing with the classical ill-posed issue. The studies are carried out using KITTI and NYU Depth v2, two widely utilized public datasets. We also examine the errors created by various models in order to expose the shortcomings of present approaches which accomplishes viable performance on KITTI besides NYU Depth v2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.