Nanocrystalline TiO2 was synthesized by the solution combustion method using titanyl nitrate and various fuels such as glycine, hexamethylenetetramine, and oxalyldihydrazide. These catalysts are active under visible light, have optical absorption wavelengths below 600 nm, and show superior photocatalytic activity for the degradation of methylene blue and phenol under UV and solar conditions compared to commercial TiO2, Degussa P-25. The higher photocatalytic activity is attributed to the structure of the catalyst. Various studies such as X-ray diffraction, Raman spectroscopy, Brunauer-Emmett-Teller surface area, thermogravimetric-differential thermal analysis, FT-IR spectroscopy, NMR, UV-vis spectroscopy, and surface acidity measurements were conducted. It was concluded that the primary factor for the enhanced activity of combustion-synthesized catalyst is a larger amount of surface hydroxyl groups and a lowered band gap. The lower band gap can be attributed to the carbon inclusion into the TiO2 giving TiO(2-2x)C(x) VO2**.
The W, V, Ce, Zr, Fe, and Cu metal ion substituted nanocrystalline anatase TiO2 was prepared by solution
combustion method and characterized by XRD, Raman, BET, EPR, XPS, IR TGA, UV absorption, and
photoluminescence measurements. The structural studies indicate that the solid solution formation was limited
to a narrow range of concentrations of the dopant ions. The photocatalytic degradation of 4-nitrophenol under
UV and solar exposure was investigated with Ti1
-
x
M
x
O2
±
δ. The degradation rates of 4-nitrophenol with these
catalysts were lesser than the degradation rates of 4-nitrophenol with undoped TiO2 both with UV exposure
and solar radiation. However, the photocatalytic activities of most metal ion doped TiO2 are higher than the
activity of the commercial TiO2, Degussa P25. The decrease in photocatalytic activity is correlated with
decrease in photoluminescence due to electron states of metal ions within the band gap of TiO2.
The photocatalytic degradation of various organics such as phenol, p-nitrophenol, and salicylic acid was carried out with combustion-synthesized nano-TiO2 under UV and solar exposure. Under identical conditions of UV exposure, the initial degradation rate of phenol with combustion-synthesized TiO2 is 2 times higher than the initial degradation rate of phenol with commercial Degussa P-25 TiO2. The intermediates such as catechol (CC) and hydroquinone (HQ) were not detected during the degradation of phenol with combustion-synthesized TiO2, while both the intermediates were detected when phenol was degraded over Degussa P-25. This indicates that the rates of secondary photolysis of CC and HQ occur extremely faster than the rates at which they are formed from phenol and further implies that the primary hydroxylation step is rate limiting for the combustion-synthesized TiO2 aided photodegradation of phenol. The degradation rates of salicylic acid and p-nitrophenol were also investigated, and the rates were higher for combustion-synthesized titania compared to Degussa P-25 TiO2. Superior activity of combustion-synthesized TiO2 toward photodegradation of organic compounds can be attributed to crystallinity, higher surface area, more surface hydroxyl groups, and optical absorption at higher wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.