We have fabricated needle-shaped emitters on a Si wafer by a MEMS process, and measured the voltage-current characteristics and the frequency dependence of a bipolar pulse voltage for ionic liquid electrospray thrusters, which can be mounted on nanosatellites (≤ ~10 kg). Although the extracted current did not increase with increasing number of emitters, probably owing to the lack of uniformity of the emitters fabricated, we have demonstrated that the emitted current depends on the gap distance between the emitter and the extractor grid electrode, and low frequencies of the bipolar pulse voltage are desirable for thruster operation. Moreover, the Bosch process is required for fabricating a reservoir of ionic liquid, which prevents undesirable
Straintronics is a new concept to enhance electronic device performances by strain for next-generation information sensors and energy-saving technologies. The lattice deformation in graphene can modulate the thermal conductivity because phonons are the main heat carriers. However, the device fabrication process affects graphene’s heat transport properties due to its high stretchability. This study experimentally investigates the change in the thermal conductivity when biaxial tensile strain is applied to graphene. To eliminate non-strain factors, two mechanisms are considered: pressure-induced and electrostatic attraction–induced strain. Raman spectroscopy and atomic force microscopy precisely estimate the strain. The thermal conductivity of graphene decreases by approximately 70% with a strain of only 0.1%. Such thermal conductivity controllability paves the way for applying graphene as high-efficiency thermal switches and diodes in future thermal management devices.
In recent years, the request of environmental safety management for carcinogenic substances, mutagenic substances and/or reproductive toxicity substances (CMR) has increased. This study focused on clarifying the genotoxicity level of environmental water and its release source by using the umu test provided in ISO13829. Although a genotoxicity index "induction ratio (IR)" is used in ISO13829, we normalised it to make it possible to compare various environmental water quantitatively to each other as a new index "genotoxic activity (GA=(IR-1)/Dose)". Sample water was collected and concentrated to 100 times or 1,000 times by a solid phase extraction method. As the test results, it was found that GA level in actual river water varied widely from less than the determination limit of 23 [1/L] to 1,100 [1/L] by quantitative comparison, and the value was also equivalent to more than 50 times the level of tap water. The GA level of household wastewater was not so high, but the levels of treated water from wastewater treatment plant (WTP) were from 220 [1/L] to 3,200 [1/L]. Raw sewage of some WTP shows high level genotoxicity. A part of genotoxicity substances, for example 50%, could be removed by conventional wastewater treatment, but it was not enough to reduce the water environmental load of genotoxicity.
Cyanobacterial blooms, consisting mainly of Microcystis spp., occur during summer in Lake Kasumigaura, Japan. Some previous studies have suggested that these blooms are enhanced by the recruitment of overwintering cells from the lake sediment. However, the volume and distribution of Microcystis in the sediment of Lake Kasumigaura are unknown. The purpose of this research was to clarify the volume, distribution, and seasonal variation of Microcystis in Lake Kasumigaura using real-time polymerase chain reaction PCR . The results showed that cell densities differed among stations and seasons. Moreover, it was suggested that cell recruitment occurred in early June in Tsuchiura Bay. Additionally, the lake bottom sediment is an unsuitable environment for the accumulation of Microcystis cells because the cells decomposed immediately and/or were transported by disconcertion at the surface of the sediment in Lake Kasumigaura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.