As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at ∼58% compared with a peak at ∼42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at ∼42%, relatively low compared with that of protein-coding cDNAs.
The in-orbit performance and calibration of the Gas Imaging Spectrometer (GIS), located on the focal plane of the X-ray astronomy satellite ASCA, are described. An extensive in-orbit calibration has confirmed its basic performance, including a position resolution of 0.6 mm (FWHM) and an energy resolution of 7.8% (FWHM), both at 6 keV. When combined with the X-ray telescope, the GIS sensitivity range becomes 0.7-10 keV. The in-orbit non X-ray background of the GIS has been confirmed to be as low as (5-9) × 10−4 cs−1 cm−2 keV−1 over the 1-10 keV range. The long-term detector gain has been stable within a few % for nearly 3 years. Extensive observations of the Crab Nebula and other sources have provided accurate calibrations of the position response, photometric capability, dead time, and timing accuracy of the GIS. Furthermore, the overall energy response, including the temporal and positional gain variations and the absolute gain scale, has been calibrated to ∼ 1%. Thus, the GIS is working as an all-round cosmic X-ray detector, capable of X-ray imagery, fine X-ray spectroscopy, X-ray photometry with a flux dynamic range covering more than 5 orders of magnitude, and fast X-ray photometry with a time resolution up to 60 μs.
The XMASS project aims to detect dark matter, pp and $^{7}$Be solar
neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon.
The first phase of the XMASS experiment searches for dark matter. In this
paper, we describe the XMASS detector in detail, including its configuration,
data acquisition equipment and calibration system.Comment: 21 pages, 9 figure
US and Japanese physicians differed when communicating directly with the child about his or her cancer. The impact of these practices on children and their parents should be explored and the parent and child's perspectives elicited. This information will help facilitate culturally sensitive patient and family centered communication.
XMASS, a low-background, large liquid-xenon detector, was used to search for
solar axions that would be produced by bremsstrahlung and Compton effects in
the Sun. With an exposure of 5.6ton days of liquid xenon, the model-independent
limit on the coupling for mass $\ll$ 1keV is $|g_{aee}|< 5.4\times 10^{-11}$
(90% C.L.), which is a factor of two stronger than the existing experimental
limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are
1.9 and 250eV, respectively. In the mass range of 10-40keV, this study produced
the most stringent limit, which is better than that previously derived from
astrophysical arguments regarding the Sun to date
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.