On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Studies were made of ASCA spectra of seven ultra-luminous compact X-ray sources (ULXs) in nearby spiral galaxies; M33 X-8 (Takano et al. two sources in NGC 4565 (Mizuno et al. 1999). With the 0.5-10 keV luminosities in the range 10 39−40 ergs s −1 , they are thought to represent a class of enigmatic X-ray sources often found in spiral galaxies. For some of them, the ASCA data are newly processed, or the published spectra are reanalyzed. For others, the published results are quoted. The ASCA spectra of all these seven sources have been described successfully with so called multi-color disk blackbody (MCD) emission arising from optically-thick standard accretion disks around black holes. Except the case of M33 X-8, the spectra do not exhibit hard tails. For the source luminosities not to exceed the Eddington limits, the black holes are inferred to have rather high masses, up to ∼ 100 solar masses. However, the observed innermost disk temperatures of these objects, T in = 1.1 − 1.8 keV, are too high to be compatible with the required high black-hole masses, as long as the standard accretion disks around Schwarzschild black holes are assumed. Similarly high disk temperatures are also observed from two Galactic transients with superluminal motions, GRO 1655-40 and GRS 1915+105. The issue of unusually high disk temperature may be explained by the black hole rotation, which makes the disk get closer to the black hole, and hence hotter.
The present paper describes the analysis of multiple RXTE/PCA data of the black hole binary with superluminal jet, XTE J1550 − 564, acquired during its 1999-2000 outburst. The X-ray spectra show features typical of the high/soft spectral state, and can approximately be described by an optically thick disk spectrum plus a power-law tail. Three distinct spectral regimes, named standard regime, anomalous regime, and apparently standard regime, have been found from the entire set of the observed spectra. When the X-ray luminosity is well below ∼ 6 × 10 38 erg s −1 (assuming a distance of 5 kpc), XTE J1550 − 564 resides in the standard regime, where the soft spectral component dominates the power-law component and the observed disk inner radius is kept constant. When the luminosity exceeds the critical luminosity, the apparently standard regime is realized, where luminosity of the optically thick disk rises less steeply with the temperature, and the spectral shape is moderately distorted from that of the standard accretion disk. In this regime, radial temperature gradient of the disk has been found to be flatter than that of the standard accretion disk. The results of the apparently standard regime are suggestive of a slim disk (e.g., Abramowicz et al. 1988, Watarai et al. 2000 which is a solution predicted under high mass accretion rate. In the intermediate anomalous regime, the spectrum becomes much harder, and the disk inner radius derived using a simple disk model spectrum apparently varies significantly with time. These properties can
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.