The thickness of copper films (100-450 nm) on silicon substrates was determined by electron probe microanalysis (EPMA) applying ~b(pz) procedures of Pouchou and Pichoir. Film thickness was calculated from experimental k-ratios analyzed with electron energies between 6 and 30 keV using commercial software (LAYERF distributed by CAMECA). The influence of the incident electron energy and X-ray line chosen for analysis on the results was investigated. Accuracy of film thickness determination was evaluated by comparison with Rutherford backscattering spectroscopy (RBS) and secondary ion mass spectrometry (SIMS). The difference between layer thicknesses determined with EPMA and RBS is in general less than 2%, if EPMA measurements are performed with various electron energies. Layer thicknesses determined with Cu-Le are mostly closer to values obtained by RBS than those derived from Cu-K~ radiation. Preliminary SIMS measurements yielded inconsistent results and, thus, cannot be used in this case to determine the layer thickness of Cu films on Si accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.