A number of neural network schemes have been applied to a large data base of pregnant women, aiming at generating a predictor for the estimation of the risk of occurrence of preeclampsia at an early stage. The database was composed of 6838 cases of pregnant women in UK, provided by the Harris Birthright Research Centre for Fetal Medicine in London. For each subject, 24 parameters were measured or recorded. Out of these, 15 parameters were considered as the most influencing at characterizing the risk of preeclampsia occurrence. A number of feedforward neural structures, both standard multilayer and multi-slab, were tried for the prediction. The best results obtained were with a multi-slab neural structure. In the training set there was a correct classification of the 83.6% cases of preeclampsia and in the test set 93.8%. The preeclampsia cases prediction for the totally unknown verification test was 100%.
A chromosomal disorder caused by the presence of all or part of an extra 21st chromosome is known as the Down syndrome, or trisomy 21, or trisomy G. In the last fifteen years it has become possible to observe these features by ultrasound examination in the third month of intrauterine life. About 75% of trisomy 21 fetuses have absent nasal bone. In the present work, neural network schemes that have been applied to a large data base of findings from ultrasounds of fetuses, aiming at generating a predictor for the risk of Down syndrome are reported. A number of feed forward neural structures, both of standard multilayer and multi-slab types were tried to find the best for prediction. The database was composed of 23513 cases of fetuses in UK, provided by the Fetal Medicine Foundation in London. For each pregnant woman, 19 parameters were measured or recorded. Out of these, 11 parameters were considered as the most influential at characterizing the risk for this type of chromosomal defect. The best results obtained were with a multi-slab neural structure. In the training set there was a correct classification of the 98.9% cases of trisomy 21 and in the guidance (test) set 100%. The prediction for the totally unknown verification test set was 93.3%.
Following the application of a large number of neural network schemes that have been applied to a large data base of pregnant women, aiming at generating a predictor for the risk of preeclampsia occurrence at an early stage, we investigated the importance of the parameters of smoking and alcohol intake on the classification yield. A number of feedforward neural structures, both standard multilayer and multi-slab, were tried for the prediction. The database was composed of 6838 cases of pregnant women in UK, provided by the Harris Birthright Research Centre for Fetal Medicine in London. For each subject, 24 parameters were measured or recorded. Out of these, 15 parameters were considered as the most influential at characterizing the risk of preeclampsia occurrence, including the characteristics on whether the pregnant woman was an active smoker or not, and on whether she was consuming alcohol. The same data were applied to the same neural architecture, after excluding the information on smoking and alcohol, in order to study the importance of these two parameters on the correct classification yield. It has been found that both information parameters, were needed in order to achieve a correct classification as high as 83.6% of preeclampsia cases in the whole dataset, and of 93.8% in the test set. The preeclampsia cases prediction, for the totally unknown verification test, was 100%. When information on smoking and alcohol intake were not used, the results deteriorated significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.