The liver-specific importer organic anion transporting polypeptide 1b2 (Oatp1b2, Slco1b2, also known as Oatp4 and Lst-1) and its human orthologs OATP1B1/1B3 transport a large variety of chemicals. Oatp1b2-null mice were engineered by homologous recombination and their phenotype was characterized. Oatp1b2 protein was absent in livers of Oatp1b2-null mice. Oatp1b2-null mice develop normally and breed well. However, adult Oatp1b2-null mice had moderate conjugated hyperbilirubinemia. Compared with wild-types, Oatp1b2-null mice had similar hepatic messenger RNA expression of most transporters examined except a higher Oatp1a4 but lower organic anion transporter 2. Intra-arterial injection of the mushroom toxin phalloidin (an Oatp1b2-specific substrate identified in vitro) caused cholestasis in wild-type mice but not in Oatp1b2-null mice. Hepatic uptake of fluorescence-labeled phalloidin was absent in Oatp1b2-null mice. Three hours after administration of microcystin-LR (a blue-green algae toxin), the binding of microcystin-LR to hepatic protein phosphatase 1/2a was much lower in Oatp1b2-null mice compared with wild-type mice. In contrast, Oatp1b2-null mice were transiently protected from decrease in bile flow induced by estradiol-17beta-D-glucuronide, a common substrate for Oatps. Oatp1b2-null mice were completely resistant to the hepatotoxicity induced by phalloidin and microcystin-LR, but were similarly sensitive to alpha-amanitin-induced hepatotoxicity compared with wild-type mice. In conclusion, Oatp1b2-null mice display altered basic physiology and markedly decreased hepatic uptake/toxicity of phalloidin and microcystin-LR. Oatp1b2-null mice are useful in elucidating the role of Oatp1b2 and its human orthologs OATP1B1/1B3 in hepatic uptake and systemic disposition of toxic chemicals and therapeutic drugs.
The organic anion–transporting polypeptide 1b family (Oatp1b2 in rodents and OATP1B1/1B3 in humans) is liver-specific and transports various chemicals into the liver. However, the role of the Oatp1b family in the hepatic uptake of bile acids (BAs) into the liver is unknown. Therefore, in Oatp1b2-null mice, the concentrations of BAs in plasma, liver, and bile were compared with wild-type (WT) mice. It was first determined that livers of the Oatp1b2-null mice were not compensated by altered expression of other hepatic transporters. However, the messenger RNA of Cyp7a1 was 70% lower in the Oatp1b2-null mice. Increased expression of fibroblast growth factor 15 in intestines of Oatp1b2-null mice might be responsible for decreased hepatic expression of Cyp7a1 in Oatp1b2-null mice. The hepatic concentration and biliary excretion of conjugated and unconjugated BAs were essentially the same in Oatp1b2-null and WT mice. The serum concentration of taurine-conjugated BAs was essentially the same in the two genotypes. In contrast, the serum concentrations of unconjugated BAs were 3–45 times higher in Oatp1b2-null than WT mice. After intravenous administration of cholate to Oatp1b2-null mice, its clearance was 50% lower than in WT mice, but the clearance of taurocholate was similar in the two genotypes.
Conclusion
This study indicates that Oatp1b2 has a major role in the hepatic uptake of unconjugated BAs.
Because cholinergic urticaria is not a homogeneous disease, its subtype classification is essential for selection of the most suitable therapeutic method.
The rat organic anion transporting polypeptide 2 (oatp2; Slc21a5) is a liver transporter that mediates the uptake of a variety of structurally diverse compounds, and has a high affinity for cardiac glycosides. Treatment of rats with pregnenolone-16␣-carbonitrile (PCN), a ligand for the rodent pregnane X receptor (PXR), significantly enhances the rat oatp2 gene expression. To understand the molecular mechanism of oatp2 induction by PCN, rat oatp2 gene was cloned. The rat oatp2 gene consists of 16 exons; alternative splicing of the second noncoding exon gives rise to the two published rat oatp2 cDNAs. Approximately 8700 base pairs (bp) of the 5Ј-flanking region of the rat oatp2 gene were linked to the luciferase reporter gene and used in transient transfection assays in H4IIE cells. Treatment of PCN induced the expression of the reporter gene in a dose-dependent manner. Four potential PXR response elements (PXREs) were identified in the 5Ј-flanking region of the rat oatp2 gene. One element (DR3-1) is located approximately Ϫ5000 bp with three more (DR3-2, DR3-3, and DR3-4) clustered at about Ϫ8000 bp. Results from electrophoretic mobility shift assays showed that the PXR-retinoid X receptor ␣ heterodimer binds to the DR3-2 with the highest affinity, to the DR3-4 and DR3-1 with a lower affinity, and weakly or not at all to the DR3-3. Furthermore, a series of partial deletions of the 5Ј-flanking region illustrated that both the proximal and distal clusters of PXREs are required for maximal induction of rat oatp2 by PCN. In conclusion, these data elucidate the molecular mechanism by which PCN treatment induces rat oatp2 gene expression. In addition, this study identifies rat oatp2 as a direct PXR-targeted gene and further supports the hypothesis that activation of PXR affects a network of genes that is involved in either metabolism or transport of drugs, steroids, and bile acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.