IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation. However, its role in B cells remains unexplored. We here show a role for IL-27 in the induction of T-bet expression and regulation of Ig class switching in B cells. Expression of WSX-1, one subunit of IL-27R, was detected at the mRNA level in primary mouse spleen B cells, and stimulation of these B cells by IL-27 rapidly activated STAT1. IL-27 then induced T-bet expression and IgG2a, but not IgG1, class switching in B cells activated with anti-CD40 or LPS. In contrast, IL-27 inhibited IgG1 class switching induced by IL-4 in activated B cells. Similar induction of STAT1 activation, T-bet expression and IgG2a class switching was observed in IFN-γ-deficient B cells, but not in STAT1-deficient ones. The induction of IgG2a class switching was abolished in T-bet-deficient B cells activated with LPS. These results suggest that primary spleen B cells express functional IL-27R and that the stimulation of these B cells by IL-27 induces T-bet expression and IgG2a, but not IgG1, class switching in a STAT1-dependent but IFN-γ-independent manner. The IL-27-induced IgG2a class switching is highly dependent on T-bet in response to T-independent stimuli such as LPS. Thus, IL-27 may be a novel attractive candidate as a therapeutic agent against diseases such as allergic disorders by not only regulating Th1 differentiation but also directly acting on B cells and inducing IgG2a class switching.
SUMMARYAlthough triggering by infectious agents and abnormal immune responses may play some role in the pathogenesis of juvenile dermatomyositis syndrome (JDMS), the precise mechanism of muscle destruction and vascular damage is largely unknown. In this study, we tried to elucidate the role of cytotoxic T cells in two patients with JDMS, who were diagnosed based on the characteristic symptoms, laboratory data, MRI findings and electromyographic patterns. Peripheral blood T cell phenotypes were determined by flow cytometry, using mAbs against specific T cell receptor (TCR) V b s. Complementaritydetermining region3 (CDR3) size analysis was performed by gene scanning of CDR3 polymerase chain reaction (PCR) amplification products specific for each V b . Subsequently, CDR3 nucleotide sequences were obtained after cloning of the predominant products. The distribution of lymphocytes infiltrating the muscle tissue was analysed by immunohistochemistry. In both patients examined, a unique combination of TCR V b repertoires was increased within the CD8 + T cells. These subpopulations expressed a characteristic phenotype, indicating that they are memory/effector T cells with killer functions. At the same time, immunohistological and molecular biological examinations of the biopsied muscle samples revealed that identical CD8 + T cell clones with identical phenotypes/TCR V b infiltrated within the inflammatory tissue, in particular around vessels. These findings indicate that oligoclonal expansion of CD8 + T cells plays a central role in the pathogenesis of muscle injury in the juvenile form of dermatomyositis syndrome and may provide a useful clinical parameter of disease activity and responsiveness to anti-inflammatory therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.