The Ras-CRK-Rap1 cellular signal-transduction system is regulated by guanine nucleotide exchange factors (GEFs). Transcription of C3G on chromosome 9q34 and a key member of the GEF gene family is activated by the CRK-adaptor protein; the C3G product is a CRK SH3 domain-binding guanine nucleotide-releasing factor. We document here the amplification of C3G in five of 18 primary non-small cell lung cancers examined and its increased expression in 18 of 28 tumors in comparison to corresponding non-cancerous lung tissues. Immunohistochemical staining revealed prominent C3G protein in the cytoplasm of cancer cells, associated with faint staining at the nucleolar membrane, but C3G was not detectable in normal bronchial mucoepithelial cells or in broncholoalveolar cells of the bronchial/bronchiolar ducts or alveoli. These data indicate that amplification and increased expression of the C3G gene may play some role in human lung carcinogenesis through derangement of the CRK-Rap1 signaling pathway.
C3G, a Crk SH3 domain-binding guanine nucleotide-releasing factor functions as a guanine nucleotide exchange factor for Rap1. It is activated via the Crk adaptor protein and plays an important role in transducing signals from receptors on the cell surface to the nucleus via the Ras/Raf/MAPK signal transduction pathway. However, since the experimental data result in pleiotropic effects in the cascade manner, its precise function remains unclear. Here we examined the C3G expression in cervical squamous cell carcinomas and found a marked decrease in the expression of C3G in a high incidence of said samples. In addition, we also demonstrated frequent hypermethylation of C3G, which resulted in an inactivation mechanism of the gene. Clinical and pathologic data failed to show any relationship between the human papillomavirus infection and the down-regulation of C3G. These results indicate that inactivation of C3G by de novo methylation plays an important role in the development of cervical squamous cell carcinoma.
Persistent human papillomavirus infections cause infected epithelial cells to lose cellular polarity leading to cell transformation. Glycolipid-enriched membrane (GEM) rafts are implicated in polarized sorting of apical membrane proteins in epithelial cells and even in signal transduction. The MAL and BENE are essential component of the GEM raft's machinery for apical sorting of membrane proteins. In this study we demonstrated down-regulation of MAL and BENE mRNA in over two-thirds of primary cervical squamous cell cancers (14 and 15 of 20 cases, for MAL and BENE, respectively) when compared to corresponding non-cancerous uterine squamous cells. Allelic loss or hyper-methylation was not accompanied by MAL or BENE mRNA down-expression in human primary cervical cancers in microsatellite allelic analysis and HpaII-PCR-based methylation analysis of the MAL and BENE genomic region. In addition, we note down-regulation of these genes in established cervical cancer cell lines. These results suggest that down-regulation of MAL and BENE genes, which are essential components of the cellular polarized sorting system, play an important role in human cervical squamous cell cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.