TMPRSS4 is a novel type II transmembrane serine protease found at the cell surface that is highly expressed in pancreatic, colon and gastric cancer tissues. However, the biological functions of TMPRSS4 in cancer are unknown. Here we show, using reverse transcription-PCR, that TMPRSS4 is highly elevated in lung cancer tissues compared with normal tissues and is also broadly expressed in a variety of human cancer cell lines. Knockdown of TMPRSS4 by small interfering RNA treatment in lung and colon cancer cell lines was associated with reduction of cell invasion and cell-matrix adhesion as well as modulation of cell proliferation. Conversely, the invasiveness, motility and adhesiveness of SW480 colon carcinoma cells were significantly enhanced by TMPRSS4 overexpression. Furthermore, overexpression of TMPRSS4 induced loss of E-cadherin-mediated cell-cell adhesion, concomitant with the induction of SIP1/ZEB2, an Ecadherin transcriptional repressor, and led to epithelialmesenchymal transition events, including morphological changes, actin reorganization and upregulation of mesenchymal markers. TMPRSS4-overexpressing cells also displayed markedly increased metastasis to the liver in nude mice upon intrasplenic injection. Taken together, these studies suggest that TMPRSS4 controls the invasive and metastatic potential of human cancer cells by facilitating an epithelial-mesenchymal transition; TMPRSS4 may be a potential therapeutic target for cancer treatment.
Energy versus momentum dispersion relations of Pd(110) along - K - X symmetry lines have been studied using angle-resolved photoemission spectroscopy with synchrotron radiation. We have observed a peak near the Fermi level over the photon energy range of 17 - 80 eV. We present conclusive data that this peak is a quantum-well state, on this metallic surface, due to the difference in the potential barriers of the surface and bulk. This peak exhibits resonance in intensity with the photon energy, which is well explained by the surface quantum-well model. This is the first observation of electron confinement at the surface of a simple metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.