Currently used on F-16 fighter jets and some space shuttles, hydrazine could be released at toxic levels to humans as a result of an accidental leakage or spill. Lower-level exposures occur in industrial workers or as a result of the use of some pharmaceuticals. A method was developed for the quantitation of hydrazine in human urine and can be extended by dilution with water to cover at least six orders of magnitude, allowing measurement at all clinically significant levels of potential exposure. Urine samples were processed by isotope dilution, filtered, derivatized, and then quantified by HPLC-MS/MS. The analytical response ratio was linearly proportional to the urine concentration of hydrazine from 0.0493 to 12.3 ng/mL, with an average correlation coefficient R of 0.9985. Inter-run accuracy for 21 runs, expressed as percent relative error (% RE) was ≤ 14%, and the corresponding precision, expressed as percent relative standard deviation (% RSD) was ≤ 15%. Since this method can provide a quantitative measurement of clinical samples over six orders of magnitude, it can be used to monitor trace amounts of hydrazine exposure as well as industrial and environmental exposure levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.