Density functional theory computations at the B3LYP/6-31G(d,p) level have been carried out for three types of model compounds, viz. (i) 4-substituted bicyclo[2.2.2]octane carboxylic acids, (ii) anions of 4-substituted bicyclo[2.2.2]octane carboxylic acids and (iii) 4-substituted quinuclidines where the substituents are NO(2), CN, Cl, Br, CF(3), F, CHO, CH(2)Cl, COOH, COCH(3), CONH(2), OH, OCH(3), C(6)H(5), NH(2), H, CH(3), CH(2)CH(3), CH(CH(3))(2), and C(CH(3))(3) to study the dependencies between molecular electrostatic potential minimum (V(min)) and the inductive substituent constant sigma(I). All the three model systems show excellent linear correlation between V(min) and sigma(I) suggesting that the calculation of V(min) parameter in these systems offers a simple and efficient computational approach for the evaluation of inductive substituent constants. The calculated linear equation for the models (i), (ii), and (iii) are V(min) = 12.982 sigma(I)- 48.867, V(min) = 13.444 sigma(I)- 182.760, and V(min) = 18.100 sigma(I)- 65.785, respectively. Considering the simplicity of the quinuclidine model, V(min) value at the nitrogen lone pair region of a 4-substituted quinuclidine system is recommended for the evaluation of sigma(I). Further, the additivity effect of sigma(I) is tested on multiply substituted quinuclidine and bicyclo[2.2.2]octane carboxylic acid derivatives using the V(min) approach and the results firmly supported the additivity rule of inductive effect. The systems showing considerable deviations from the additivity rule are easily recognized as those showing either steric effect or intramolecular hydrogen bond interactions at the V(min) response site. However, the distance relation of sigma(I) is not well represented in the caged molecular systems.
A comparison of the performance of various density functional methods including long-range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97-D, B1B95, MPWB1K, M06-2X, SVWN5, ωB97XD, long-range correction (LC)-ωPBE, and CAM-B3LYP using 6-31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A(+)) forms of alanine with benzene by taking the Møller-Plesset (MP2)/6-31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine-benzene complexes were assessed at coupled cluster (CCSD)/6-31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06-2X, SVWN5, and the dispersion corrected B97-D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97-D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long-range corrected methods, LC-ωPBE and CAM-B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values.
A systematic study of CH...pi, OH...pi, NH...pi, and cation...pi interactions has been done using complexes of phenylalanine in its cationic, anionic, neutral, and zwitterionic forms with CH(4), H(2)O, NH(3), and NH(4) (+) at B3LYP, MP2, MPWB1K, and M06-2X levels of theory. All noncovalent interactions are identified by the presence of bond critical points (bcps) of electron density (rho(r)) and the values of rho(r) showed linear relationship to the binding energies (E(total)). The estimated E(total) from supermolecule, fragmentation, and rho(r) approaches suggest that cation...pi interactions are in the range of 36 to 46 kcal/mol, whereas OH...pi, and NH...pi interactions have comparable strengths of 6 to 27 kcal/mol and CH...pi interactions are the weakest (0.62-2.55 kcal/mol). Among different forms of phenylalanine, cationic form generally showed the highest noncovalent interactions at all levels of theory. Cooperativity of multiple interactions is analyzed on the basis of rho(r) at bcps which suggests that OH...pi and NH...pi interactions show positive, whereas CH...pi and cation...pi interactions exhibit negative cooperativity with respect to the side chain hydrogen bond interactions. In general, side chain interactions are strengthened as a result of aromatic interaction. Solvation has no significant effect on the overall geometry of the complex though slight weakening of noncovalent interactions by 1-2 kcal/mol is observed. An assessment of the four levels of theory studied herein suggests that both MPWB1K and M06-2X give better performance for noncovalent interactions. The results also support the fact that B3LYP is inadequate for the study of weak interactions.
Electrochemical windows (ECWs) of the cyclic ammonium based ionic liquids formed by the combination of two common pyrrolidinium cations—N,N‐butylmethyl pyrrolidinum(Pyr14) and N,N‐hexylmethyl pyrrolidinium(Pyr16) and five anions—dicyanamide, trifluoroacetate, fluoromethane sulfonate, bis((trifluoromethylsulfonyl)imide, and bis(fluorosulfonyl)imide were investigated. The ECW of each ionic liquid was obtained from the oxidation and reduction potentials of these ionic liquids with respect to a Li+/Li reference electrode by using thermodynamic cycle method. The work reveals that the ECWs of these ionic liquids are solely decided by the HOMO energy of pairing anions. The ECWs were also computed using HOMO‐LUMO method employing Møller‐Plesset perturbation theory to the second order and M06L methods with a basis set of 6‐31 + G(d, p). The ECW computed using M06L functional with an extended basis set of 6‐311++G(d, p) showed better agreement with experimental values suggesting accurate computation of ECW is possible at lower computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.