The performance of Global Navigation Satellite System (GNSS) receivers is limited by the ionospheric scintillation effects that cause signal degradation due to refraction, reflection and scattering of the signals. Hence, there is a need to develop an ionospheric scintillation detection technique for robust GNSS receivers. In this paper, a new algorithm based on multifractal detrended fluctuation analysis (MF-DFA) is proposed for detecting the ionospheric irregularities. The ionospheric and scintillation GNSS data recorded at Koneru Lakshmaiah (KL) University, Guntur, India, was considered for the analysis. The carrier to noise ratio (C/N 0) time series data of GNSS satellite vehicles that are affected due to scintillations was decomposed using adaptive time-frequency methods like empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and complementary ensemble empirical mode decomposition (CEEMD). It was observed that the CEEMD method combined with MF-DFA provides better results as compared to the EMD and EEMD techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.