Efficacy of the multi-robot systems depends on proper sequencing and optimal allocation of robots to the tasks. Focuses on deciding the optimal allocation of set-of-robots to a set-of-tasks with precedence constraints considering multiple objectives. Taguchi’s design of experiments based parameter tuned genetic algorithm (GA) is developed for generalised task allocation of single-task robots to multi-robot tasks. The developed methodology is tested for 16 scenarios by varying the number of robots and number of tasks. The scenarios were tested in a simulated environment with a maximum of 20 robots and 40 multi-robot foraging tasks. The tradeoff between performance measures for the allocations obtained through GA for different task levels was used to decide the optimal number of robots. It is evident that the tradeoffs occur at 20 per cent of performance measures and the optimal number of robot varies between 10 and 15 for almost all the task levels. This method shows good convergence and found that the precedence constraints affect the optimal number of robots required for a particular task level.
This research work aims at multi objective optimization of integrated route planning and multi-robot task allocation for reconfigurable robot teams. Genetic Algorithm based methodology is used to minimize the overall task completion time for all the multi-robot tasks and to minimize the cumulative running time of all the robots. A modified matrix based chromosome is used to accommodate the robot information and task information for route planning integrated task allocation. The experimental validation is done with 3 robots and 4 tasks. For larger number of robots and tasks were simulated to perform route planning for maximum of 20 robots that would attend the maximum of 40 different multi-robot tasks. The results shows that the average task completion time per robot and average travel time per robot, decreases exponentially with increase in number of robots for fixed number of tasks. This method finds its application in allocating a robot teams to tasks and finding the best sequence for robots that work in coordination for material handling in hospital management, warehouse operations, military operations, cleaning tasks etc.
Currently, automated and semi-automated industries need multiple objective path planning algorithms for mobile robot applications. The multi-objective optimisation algorithm takes more computational effort to provide optimal solutions. The proposed grid-based multi-objective global path planning algorithm [Quadrant selection algorithm (QSA)] plans the path by considering the direction of movements from starting position to the target position with minimum computational effort. Primarily, in this algorithm, the direction of movements is classified into quadrants. Based on the selection of the quadrant, the optimal paths are identified. In obstacle avoidance, the generated feasible paths are evaluated by the cumulative path distance travelled, and the cumulative angle turned to attain an optimal path. Finally, to ease the robot’s navigation, the obtained optimal path is further smoothed to avoid sharp turns and reduce the distance. The proposed QSA in total reduces the unnecessary search for paths in other quadrants. The developed algorithm is tested in different environments and compared with the existing algorithms based on the number of cells examined to obtain the optimal path. Unlike other algorithms, the proposed QSA provides an optimal path by dramatically reducing the number of cells examined. The experimental verification of the proposed QSA shows that the solution is practically implementable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.