The development of a wake flow downstream of a cylindrical rod within a curved channel under zero streamwise pressure gradient is theoretically and experimentally investigated. The measured asymmetric wake quantities such as the mean velocity and turbulent fluctuations in longitudinal and lateral directions as well as the turbulent shear stress are transformed from the probe coordinate system into the curvilinear wake eigen-coordinate system. For the transformed non-dimensionalized velocity defect and the turbulent quantities, affine profiles are observed throughout the flow regime. Based on these observations and using the transformed equations of motion and continuity, a theoretical frame work is established that generally describes the two-dimensional curvilinear wake flow. The theory also describes the straight wake as a special case, for which the curvature radius approaches infinity. The comparison of the theory with the experimental data pertaining to the curvilinear and straight wakes demonstrate the general validity of the theory.
The unsteady boundary layer behavior on a turbine cascade is experimentally investigated and the results are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, three different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity, turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity.
The development of a wake flow downstream of a cylindrical rod within a curved channel under zero streamwise pressure gradient is theoretically and experimentally investigated. The measured asymmetric wake quantities such as the mean velocity and turbulent fluctuations in longitudinal and lateral directions as well as the turbulent shear stress are transformed from the probe coordinate system into the curvilinear wake eigen-coordinate system. For the transformed non-dimensionalized velocity defect and the turbulent quantities, affine profiles are observed throughout the flow regime. Based on these observations and using the transformed equations of motion and continuity, a theoretical frame work is established that generally describes the two-dimensional curvilinear wake flow. The theory also describes the straight wake as a special case, for which the curvature radius approaches infinity. The comparison of the theory with the experimental data pertaining to the curvilinear and straight wakes demonstrate the general validity of the theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.