The performance of most electronic chassis control systems in the past has been optimized individually. Recently, a great research effort has been dedicated to the integration of chassis control systems in an effort to improve the vehicle performance. This involves orchestration of individual control modules so that they can jointly contribute to the enhancement of their control effect. In this research, two integrated control logics for AFS (Active Front Steering) and ESP (Electronic Stability Program) have been developed. Of the two logics, one uses a supervisor that rules over the individual modules. The other logic uses a CL (Characteristic Locus) method, which is a frequency-domain multivariable control technique. The two logics have been tested under various driving conditions to investigate their control effects. The results indicate that the proposed integrated control logics can yield vehicle performance that is superior to that of the individual control modules without any integration scheme.
Developed in this research is a control logic for the ARC (Active Roll Control) system that uses rotary-type hydraulic stabilizer actuators at the front and rear axles. The hydraulic components of the system were modeled in detail using AMESim, and a driving logic for the hydraulic circuit was constructed based upon the model. The performance of the driving logic was evaluated on a test bench, and it demonstrated good pressure tracking capability. The control logic was then designed with the target of reducing the roll motion of the vehicle during cornering. The control logic consists of two parts: a feedforward controller that generates anti-roll moments in response to the centrifugal force, and a feedback controller that generates anti-roll moments in order to make the roll angle to follow its target value. The developed ARC logic was evaluated on a test vehicle under various driving conditions including a slowly accelerated circular motion and a sinusoidal steering. Through the test, the ARC system demonstrated successful reduction of the roll motion under all conditions, and any discomfort due to the control delay was not observed even at a fast steering maneuver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.