The goal of this paper is to describe a robust artifact removal (RAR) method, an automatic sequential procedure which is capable of removing short-duration, high-amplitude artifacts from long-term neonatal EEG recordings. Such artifacts are mainly caused by movement activity, and have an adverse effect on the automatic processing of long-term sleep recordings. The artifacts are removed sequentially in short-term signals using independent component analysis (ICA) transformation and wavelet denoising. In order to gain robustness of the RAR method, the whole EEG recording is processed multiple times. The resulting tentative reconstructions are then combined. We show results in a data set of signals from ten healthy newborns. Those results prove, both qualitatively and quantitatively, that the RAR method is capable of automatically rejecting the mentioned artifacts without changes in overall signal properties such as the spectrum. The method is shown to perform better than either the wavelet-enhanced ICA or the simple artifact rejection method without the combination procedure.
The most important step in the whole process is feature extraction and feature selection. In this process, we used visualization as an additional tool that helped us to decide which features to select. Proper selection of features may significantly influence the success rate of the classification. We made a visual comparison of the computed features with the manual scoring provided by the expert. A hidden Markov model was used for classification. The advantage of this model is that it determines the future behavior of the process by its present state. In this way, it preserves information about temporal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.