The Current study aims at using defective 1D photonic crystals to detect the Chikungunya virus in various healthy and diseased blood samples composed of plasma, platelets, red blood cells, and uric acid. The proposed PC structure has 14 periods and consists of repeating SiC and SiO2 layers with a central cavity layer. When blood samples are injected into the cavity layer, the transmittance spectrum is examined theoretically by using a transfer matrix approach to determine how the wavelength of the defect mode changes. The cavity layer is 540 nm and 648 nm thick, and the work has been carried out at different angles of incidence. The performance of the sensor is quantified by computing the sensitivity, figure of merit, quality factor, and limit of detection values of the sensor for various blood samples. The maximum sensitivity is 1205.5 nm/RIU and detection limits of the order is 10‐6 in this prosped work. A lower value of SR of 0.01218 is also achieved. Such a high‐performance sensor is suitable for biosensing applications with better sensing capabilities.This article is protected by copyright. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.