We show how a theory for electrocatalysis developed in our group can be combined with density-functional theory in order to obtain free-energy surfaces for electrochemical reactions. The combined theory is applied to the first step in the hydrogen evolution reaction, which is a proton transfer from an electrolyte solution to a metal electrode. Explicit calculations have been performed for five metals: Pt, Au, Ag, Cu, and Cd. In accord with experimental findings we find a high activation energy for Cd, medium values for the coin metals, and on Pt the transfer occurs with little activation. These results are explained in terms of the position of the d band of these metals and their interactions with the hydrogen 1s orbital as the latter passes the Fermi level in the presence of the solvent.
We have performed ab initio calculations for the adsorption of L-cysteine on Ag(111) using density functional theory. We have focused on two possible adsorbed species: the L-cysteine radical (•S-CH(2)-CH-NH(2)-COOH) adsorbed almost flat at a bridge site, slightly displaced toward an fcc location, and the zwitterionic radical Z-cysteine (•S-CH(2)-CH-NH(3)(+)-COO(-)) adsorbed at a bridge site, shifted to a hcp site forming a (4 × 4) unit cell (θ = 0.06) and a (√3 × √3) R 30° unit cell (θ = 0.33), respectively. Special attention has been paid to the electronic structure of the system. The adsorbate-silver bond formation has been exhaustively investigated by analyzing the density of states projected onto the different atoms of the molecule, and by charge density difference calculations. A complicated interplay between sp and d states of silver in the formation of bonds between the adsorbates and the surface has been found. The role of the carboxyl group in the interaction with the surface has been also analyzed.
A recently developed model for electrocatalysis is combined with results of quantum chemical calculations to investigate the effect of the electrode's electronic structure on the rate of the hydrogen oxidation reaction. Model calculations have been performed for three metals with widely differing properties: Cd(0001), Au(111) and Pt(111). In line with experimental findings, the energy of activation decreases in this order. These results are explained in terms of the interaction of the bonding orbital of the hydrogen molecule with the d band of the electrode as it passes the Fermi level.
Hydrogen evolution on single-crystal copper and silver is investigated by a combination of density functional theory and a theory developed in our own group. At short times, the reaction rate is determined by the transfer of the first proton to the electrode surface. In accord with experiment, we find for both metals that this reaction proceeds faster on the (111) surfaces than on the (100) ones. The main cause is the lower, that is, more favourable, adsorption energy on the former surfaces. On both silver surfaces, the second step is electrochemical desorption. The same mechanism is likely to operate on copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.