In this work, we propose a prospective novel method to address illumination invariant system for facial expression recognition. Facial expressions are used to convey nonverbal visual information among humans. This also plays a vital role in human-machine interface modules that have invoked attention of many researchers. Earlier machine learning algorithms require complex feature extraction algorithms and are relying on the size and uniqueness of features related to the subjects. In this paper, a deep convolutional neural network is proposed for facial expression recognition and it is trained on two publicly available datasets such as JAFFE and Yale databases under different illumination conditions. Furthermore, transfer learning is used with pre-trained networks such as AlexNet and ResNet-101 trained on ImageNet database. Experimental results show that the designed network could recognize up to 30% variation in the illumination and it achieves an accuracy of 92%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.