With the rapid evolution of Internet technology, fog computing has taken a major role in managing large amounts of data. The major concerns in this domain are security and privacy. Therefore, attaining a reliable level of confidentiality in the fog computing environment is a pivotal task. Among different types of data stored in the fog, the 3D point and mesh fog data are increasingly popular in recent days, due to the growth of 3D modelling and 3D printing technologies. Hence, in this research, we propose a novel scheme for preserving the privacy of 3D point and mesh fog data. Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness, deterministic nature, sensitivity to initial conditions, ergodicity, etc. To boost encryption efficiency significantly, in this work, we propose a novel Chaotic Cat map. The sequence generated by this map is used to transform the coordinates of the fog data. The improved range of the proposed map is depicted using bifurcation analysis. The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy. We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack. The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.