We present new large time step methods for the shallow water flows in the low Froude number limit. In order to take into account multiscale phenomena that typically appear in geophysical flows nonlinear fluxes are split into a linear part governing the gravitational waves and the nonlinear advection. We propose to approximate fast linear waves implicitly in time and in space by means of a genuinely multidimensional evolution operator. On the other hand, we approximate nonlinear advection part explicitly in time and in space by means of the method of characteristics or some standard numerical flux function. Time integration is realized by the implicit-explicit (IMEX) method. We apply the IMEX Euler scheme, two step Runge Kutta Cranck Nicolson scheme, as well as the semi-implicit BDF scheme and prove their asymptotic preserving property in the low Froude number limit. Numerical experiments demonstrate stability, accuracy and robustness of these new large time step finite volume schemes with respect to small Froude number.
We propose a low Mach number, Godunov-type finite volume scheme for the numerical solution of the compressible Euler equations of gas dynamics. The scheme combines Klein's non-stiff/stiff decomposition of the fluxes [J. Comput. Phys., 121 (1995), pp. 213-237] with an explicit/implicit time discretization [F. Cordier, P. Degond, and A. Kumbaro, J. Comput. Phys., 231 (2012), pp. 5685-5704] for the split fluxes. This results in a scalar second order partial differential equation (PDE) for the pressure, which we solve by an iterative approximation. Due to our choice of a crucial reference pressure, the stiff subsystem is hyperbolic, and the second order PDE for the pressure is elliptic. The scheme is also uniformly asymptotically consistent. Numerical experiments show that the scheme needs to be stabilized for low Mach numbers. Unfortunately, this affects the asymptotic consistency, which becomes nonuniform in the Mach number, and requires an unduly fine grid in the small Mach number limit. On the other hand, the CFL number is only related to the nonstiff characteristic speeds, independently of the Mach number. Our analytical and numerical results stress the importance of further studies of asymptotic stability in the development of asymptotic preserving schemes.
In this paper the analysis of an asymptotic preserving (AP) IMEX-RK finite volume scheme for the wave equation system in the zero Mach number limit is presented. The accuracy of a numerical scheme at low Mach numbers is its ability to maintain the solution close to the incompressible solution for all times, and this can be formulated in terms of the invariance of a space of constant densities and divergence-free velocities. An IMEX-RK methodology is employed to obtain a time semi-discrete scheme, and a space-time fully-discrete scheme is derived by using standard finite volume techniques. The existence of a unique numerical solution, its uniform stability with respect to the Mach number, the AP property, and the accuracy at low Mach numbers are established for both time semi-discrete, and space-time fully-discrete schemes. Extensive numerical case studies confirm uniform second order convergence of the scheme with respect to the Mach number, and all the above-mentioned properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.