Methane (CH 4 ) is a potent greenhouse gas and ozone precursor. Quantifying methane emissions is critical for projecting and mitigating changes to climate and air quality. Here we present CH 4 observations made from space combined with Earth-based remote sensing column measurements. Results indicate the largest anomalous CH 4 levels viewable from space over the conterminous U.S. are located at the Four Corners region in the Southwest U.S. Emissions exceeding inventory estimates, totaling 0.59 Tg CH 4 /yr [0.50-0.67; 2σ], are necessary to bring high-resolution simulations and observations into agreement. This underestimated source approaches 10% of the EPA estimate of total U.S. CH 4 emissions from natural gas. The persistence of this CH 4 signal from 2003 onward indicates that the source is likely from established gas, coal, and coalbed methane mining and processing. This work demonstrates that space-based observations can identify anomalous CH 4 emission source regions and quantify their emissions with the use of a transport model.
Emissions estimates of anthropogenic methane (CH4) sources are highly uncertain and many sources related to energy production are localized yet difficult to quantify.Airborne imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) are well suited for locating CH4 point sources due to their ability to map concentrations over large regions with the high spatial resolution necessary to resolve localized emissions. AVIRIS-NG was deployed during a field campaign to measure controlled CH4 releases at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming, U.S. for multiple flux rates and flight altitudes. Two algorithms were applied to AVIRIS-NG scenes, a matched filter detection algorithm and a hybrid retrieval approach using the Iterative Maximum a Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm and Singular Value Decomposition.Plumes for releases as low as 14.16 m 3 /h (0.09 kt/year) were consistently observed by AVIRIS-NG at multiple flight altitudes and images of plumes were in agreement with wind directions measured at ground stations. In some cases plumes as low as 3.40 m 3 /h (0.02 kt/year) were detected, indicating that AVIRIS-NG has the capability of detecting a wide range of fugitive CH4 source categories for natural gas fields. This controlled release experiment is the first of its kind using AVIRIS-NG and demonstrates the utility of imaging spectrometers for direct attribution of emissions to individual point source locations. This is particularly useful given the large uncertainties associated with anthropogenic CH4 emissions, including those from industry, gas transmission lines, and the oil and gas sectors.
The impact of atmospheric boundary layer (ABL) interactions with large-scale stably stratified flow over an isolated, two-dimensional hill is investigated using turbulence-resolving large-eddy simulations. The onset of internal gravity wave breaking and leeside flow response regimes of trapped lee waves and nonlinear breakdown (or hydraulic-jump-like state) as they depend on the classical inverse Froude number, Fr−1 = Nh/Ug, is explored in detail. Here, N is the Brunt–Väisälä frequency, h is the hill height, and Ug is the geostrophic wind. The results here demonstrate that the presence of a turbulent ABL influences mountain wave (MW) development in critical aspects, such as dissipation of trapped lee waves and amplified stagnation zone turbulence through Kelvin–Helmholtz instability. It is shown that the nature of interactions between the large-scale flow and the ABL is better characterized by a proposed inverse compensated Froude number, = N(h − zi)/Ug, where zi is the ABL height. In addition, it is found that the onset of the nonlinear-breakdown regime, ≈ 1.0, is initiated when the vertical wavelength becomes comparable to the sufficiently energetic scales of turbulence in the stagnation zone and ABL, yielding an abrupt change in leeside flow response. Finally, energy spectra are presented in the context of MW flows, supporting the existence of a clear transition in leeside flow response, and illustrating two distinct energy distribution states for the trapped-lee-wave and the nonlinear-breakdown regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.