This 2004 introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. Various important settings, such as group algebras, Lie algebras, and quantum groups, are sketched at the outset to describe typical problems and provide motivation. The text then develops and illustrates the standard ingredients of the theory: e.g., skew polynomial rings, rings of fractions, bimodules, Krull dimension, linked prime ideals. Recurring emphasis is placed on prime ideals, which play a central role in applications to representation theory. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. Material includes the basic types of quantum groups, which then serve as test cases for the theory developed.
Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
The construction of the C*-algebra associated to a directed graph E is extended to incorporate a family C consisting of partitions of the sets of edges emanating from the vertices of E. These C*-algebras C * (E, C) are analyzed in terms of their ideal theory and K-theory, mainly in the case of partitions by finite sets. The groups K 0 (C * (E, C)) and K 1 (C * (E, C)) are completely described via a map built from an adjacency matrix associated to (E, C). One application determines the K-theory of the C*-algebras U nc m,n , confirming a conjecture of McClanahan. A reduced C*-algebra C * red (E, C) is also introduced and studied. A key tool in its construction is the existence of canonical faithful conditional expectations from the C*-algebra of any row-finite graph to the C*-subalgebra generated by its vertices. Differences between C * red (E, C) and C * (E, C), such as simplicity versus non-simplicity, are exhibited in various examples, related to some algebras studied by McClanahan.
-A separative ring is one whose finitely generated projective modules satisfy the property A EB A � A EB B � B EB B ==} A ,...., B. This condition is shown to provide a key to a number of outstanding cancellation problems for finitely generated projective modules over exchange rings. It is shown that the class of separate exchange rings is very broad, and, notably, closed under extensions of ideals by factor rings. That is, if an exchange ring R has an ideal I with I and Rf I both separative, then R is separative. SEPARATIVE CANCELLATION FOR PROJECTIVE MODULES OVER EXCHANGE RINGSP. ARA, K.R. GOODEARL, K.C. O'MEARA AND E. PARDO ABSTRACT. A separative ring is one whose finitely generated projective modules satisfy the property A EB A ~ A EB B ~ B EB B ~ A ~ B. This condition is shown to provide a key to a number of outstanding cancellation problems for finitely generated projective modules over exchange rings. It is shown that the class of separative exchange rings is very broad, and, notably, closed under extensions of ideals by factor rings. That is, if an exchange ring R has an ideal I with I and R/ I both separative, then R is separative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.