Saponins occur widely in plant species and exhibit a range of biological properties, both beneficial and deleterious. This review, which covers the literature to mid 1986, is concerned with their occurrence in plants and their effects when consumed by animals and man. After a short discussion on the nature, occurrence, and biosynthesis of saponins, during which the distinction between steroidal and triterpenoid saponins is made, the structures of saponins which have been identified in a variety of plants used as human foods, animal feedingstuffs, herbs, and flavorings are described. Many of these compounds have been characterized only during the last 2 decades, and modern techniques of isolation, purification, and structural elucidation are discussed. Particular consideration is given to mild chemical and enzymatic methods of hydrolysis and to recent developments in the application of NMR and soft ionization MS techniques to structural elucidation. Methods currently used for the quantitative analysis of saponins, sapogenols, and glycoalkaloids are critically considered; advances in the use of newer methods being emphasized. The levels of saponins in a variety of foods and food plants are discussed in the context of the methods used and factors affecting these levels, including genetic origin, agronomic, and processing variables, are indicated. Critical consideration is given to the biological effects of saponins in food which are very varied and dependent upon both the amount and chemical structure of the individual compounds. The properties considered include membranolytic effects, toxic and fungitoxic effects, adverse effects on animal growth and performance, and the important hypocholesterolemic effect. A final section deals briefly with the pharmacological effects of saponins from ginseng, since use of this plant is increasing in certain sections of western society as well as being traditional in the Orient.
This review is concerned with the presence of naturally occurring oestrogens in food plants and processed foods. Particular emphasis is placed on isoflavones and coumestans, both of which are true plant oestrogens, and the resorcylic acid lactones, more correctly classified as fungal oestrogens. The metabolism and mode of action of these compounds is discussed and their biological potencies, determined in both in vivo and in vitro studies, described. Current methods of analysis are indicated and the levels of these oestrogens in food plants, processed foods and foodstuffs are presented. Botanical, environmental or technological factors affecting the possible intake of plant and fungal oestrogens are mentioned and the hazard associated with such intake is compared with that originating from other dietary or medicinal hormonally active substances. Indications are given of the wide range of common food plants which have been reported to possess oestrogenic (uterotropic) activity, although it is emphasized that in general further work is necessary to substantiate these claims and to confirm the identities of the biologically active principles which have in some cases been proposed. In the concluding section suggestions are made for additional research considered important or necessary in this interesting area.
Eight varieties of lettuce (Lactuca sativum) and three varieties of endive (Cichorium endivia) were analyzed for flavonoid composition and content. Total flavonoid contents, expressed as units of aglycon for fresh material, were in the ranges of 0.3-229 microg/g for lettuce and 44-248 microg/g for endive. Five quercetin conjugates [quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-glucuronide, quercetin 3-O-(6-O-malonyl)glucoside, and quercetin 3-O-rhamnoside] and luteolin 7-O-glucuronide were measured in the green-leafed lettuce and an additional two cyanidin conjugates [cyanidin 3-O-glucoside and cyanidin 3-O-[(6-O-malonyl)glucoside]] in the red-leafed varieties. Three kaempferol conjugates [kaempferol 3-O-glucoside, kaempferol 3-O-glucuronide, and kaempferol 3-O-[6-O-malonyl)glucoside]] were measured in each of the endive varieties. The presence and identity of kaempferol 3-O-(6-O-malonyl)glucoside in endive was shown for the first time. Shredding of lettuce leaf followed by exposure to light produced significant losses of the flavonoid moiety in the green oak leaf (94%), red oak leaf (43%), iceberg (36%), green batavia (25%), lollo biondo (24%), and lollo rosso (6%) samples, whereas cos and green salad bowl samples did not show an overall loss. Shredding of endive also produced loss of the flavonoid moiety in escarole (32%), fine frisee (13%), and coarse frisee (8%). Significant demalonation was observed for both the quercetin and cyanidin glucosides in lettuce, whereas a similar degradation of the kaempferol analogue was found in endive tissue. Storage of whole heads of both lettuce and endive in the dark at 1 degrees C and 98% humidity for 7 days resulted in losses of total flavonol glycosides in the range of 7-46%. The identification of the amounts, position of substitution, and nature of the sugars is important for understanding the potential bioavailability and biological activities of flavonoids in salads.
The stability of the major flavonol glucosides, quercetin 3,4‘-O-diglucoside (QDG) and quercetin 4‘-O-monoglucoside (QMG), was studied in two varieties of onion (Red Baron and Crossbow) that were cured and stored for 6 months under normal commercial conditons and analyzed at regular intervals. Onions were also cooked by boiling in water and by frying in oil under normal domestic conditions. Apart from a 50% loss of quercetin 4‘-O-monoglucoside during the initial drying process, little change in content and composition was observed over 6 months of storage. Neither boiling nor frying resulted in interconversion of the quercetin conjugates or production of free quercetin, although a 25% loss overall was recorded for each process. Keywords: Onion; Allium cepa; flavonol; quercetin; glucoside; HPLC; storage; processing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.