Cloud computing provides on demand access to a large pool of heterogeneous computational and storage resources to users over the internet. Optimal scheduling mechanisms are needed for the efficient management of these heterogeneous resources. The optimal scheduler can improve the Quality of Services (QoS) as well as maintaining efficiency and fairness among these tasks. In large scale distributed systems, the performance of these scheduling algorithms is crucial for better efficiency. Now the cloud customers are charged based upon the amount of resources they are consumed or held in reserve. Comparing these scheduling algorithms from different perspectives is needed for further improvement. This paper provides a comparative study about different resource allocation, load balancing and virtual machine consolidation algorithms in cloud computing. These algorithms have been evaluated in terms of their ability to provide QoS for the tasks and Service Level Agreement (SLA) guarantee amongst the jobs served. This study identifies current and future research directions in this area for QoS enabled cloud scheduling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.