The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.
In recent years there has been growing interest in environmental forms of trace evidence, and ecological trace evidence collected from footwear has proved valuable within casework. Simultaneously, there has been growing awareness of the need for empirical experimentation to underpin forensic inferences. Diatoms are unicellular algae, and each cell (or 'frustule') consists of two valves which are made of silica, a robust material that favours their preservation both in sediments and within forensic scenarios. A series of experiments were carried out to investigate the transfer and persistence of diatoms upon common footwear materials, a recipient surface that has historically been overlooked by studies of persistence. The effectiveness of two novel extraction techniques (jet rinsing, and heating and agitation with distilled water) was compared to the established extraction technique of hydrogen peroxide digestion, for a suite of five common footwear materials: canvas, leather, and 'suede' (representing upper materials), and rubber and polyurethane (representing sole materials). It was observed that the novel extraction technique of heating and agitation with distilled water did not extract fewer diatom valves, or cause increased fragmentation of valves, when compared to peroxide digestion, suggesting that the method may be viable where potentially hazardous chemical reactions may be encountered with the peroxide digestion method. Valves could be extracted from all five footwear materials after 3min of immersion, and more valves were extracted from the rougher, woven upper materials than the smoother sole materials. Canvas yielded the most valves (a mean of 2511/cm) and polyurethane the fewest (a mean of 15/cm). The persistence of diatoms on the three upper materials was addressed with a preliminary pilot investigation, with ten intervals sampled between 0 and 168h. Valves were seen to persist in detectable quantities after 168h on all three upper materials. However, some samples produced slides with no valves, and the earliest time after which no diatom valves were found was 4h after the transfer. Analysis of the particle size distributions over time, by image analysis, suggests that the retention of diatoms may be size-selective; after 168h, no particles larger than 200μm could be found on the samples of canvas, and >95% of the particles on the samples of suede were less than or equal to 200μm. A pilot investigation into the effects of immersion interval was carried out upon samples of canvas. Greater numbers of valves were extracted from the samples with longer immersion intervals, but even after 30s, >500 valves could be recovered per cm, suggesting that footwear may be sampled for diatoms even if the contact with a water body may have been brief. These findings indicate that, if the variability within and between experimental runs can be addressed, there is significant potential for diatoms to be incorporated into the trace analysis of footwear and assist forensic reconstructions.
Freshwater diatoms offer valuable circumstantial forensic indicators, with a growing empirical research base aiming to identify and understand some of the spatial and temporal factors affecting their validity as trace evidence. Previous studies demonstrated that recipient surface characteristics, environmental variability, and individual species traits influence the initial transfer of freshwater diatoms to clothing. However, no previous research has sought to consider the impact of these and other variables on the persistence of transferred diatoms over investigative timescales. Therefore, this study aimed to identify and explore diatom retention dynamics on clothing following wear over time (hours to weeks). A series of experiments were designed to examine the impact of clothing material, seasonality, and time since wear (persistence interval) on the total number and species-richness of diatoms recovered and their relative retention (%) over time. Nine clothing swatches were immersed in a freshwater environment and then worn for one month in the spring. Subsamples were retrieved at regular intervals (e.g. 30 mins, 1 h, 8 h, 24 h) up to one month, diatoms were extracted using a H 2 O 2 method, and examined microscopically. Three clothing materials were subject to the same experiment in the winter to generate a seasonal comparison. The results broadly identified three stages of diatom persistence on clothing -rapid initial loss, variable intermediate decay, and sustained long-term presence. Clothing material significantly impacted the number of diatoms recovered and retention dynamics over time, with complex interactions identified with seasonality. Although fewer diatoms were recovered in the winter, overall retention trends were consistent at the different times of year. The findings demonstrate that diatoms can be recovered from clothing, even weeks or months after an initial transfer, yielding a useful environmental trace indicator for forensic reconstructions over investigative timescales. The impact of clothing material and seasonality on persistence identified cotton, acrylic, and viscose clothing as the most reliable temporal repository of diatom trace evidence, with a more abundant forensic assemblage available for forensic comparisons in the spring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.