Coinfections in COVID-19 patients may worsen disease outcomes and need further investigation. We found that a higher proportion of patients with COVID-19 were coinfected with one or more additional pathogens. A better understanding of the prevalence of coinfection with other respiratory pathogens in COVID-19 patients and the profile of pathogens can contribute to effective patient management and antibiotic stewardship during the current pandemic.
Emerging evidence shows co-infection with atypical bacteria in coronavirus disease 2019 patients. Respiratory illness caused by atypical bacteria such as Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella pneumophila may show overlapping manifestations and imaging features with COVID-19 causing clinical and laboratory diagnostic issues. We conducted a prospective study to identify co-infections with SARS-CoV-2 and atypical bacteria in an Indian tertiary hospital. From June 2020 to January 2021, a total of 194 patients with laboratoryconfirmed COVID-19 were also tested for atypical bacterial pathogens. For diagnosing M. pneumoniae, a real-time polymerase chain reaction (PCR) assay and serology (IgM ELISA) were performed. C. pneumoniae diagnosis was made based on IgM serology. L. pneumophila diagnosis was based on PCR or urinary antigen testing. Clinical and epidemiological features of SARS-CoV-2 and atypical bacteria-positive and -negative patient groups were compared. Of the 194 patients admitted with COVID-19, 17 (8.8%) were also diagnosed with M. pneumoniae (n = 10) or C. pneumoniae infection (n = 7). Confusion, headache, and bilateral infiltrate were found more frequently in the SARS CoV-2 and atypical bacteria co-infection group. Patients in the M. pneumoniae or C. pneumoniae co-infection group were more likely to develop ARDS, required ventilatory support, had a longer hospital length of stay, and higher fatality rate compared to patients with only SARS-CoV-2. Our report highlights co-infection with bacteria causing atypical pneumonia should be considered in patients with SARS-CoV-2 depending on the clinical context. Timely identification of co-existing pathogens can provide pathogen-targeted treatment and prevent fatal outcomes of patients infected with SARS-CoV-2 during the current pandemic.
Atypical pathogens including and are increasingly recognized as important causes of community-acquired pneumonia (CAP). accounts for 20-40% of all CAP and is responsible for 3-15% of cases. The paucity of data from India in this regard prompted us to conduct this prospective multicentric analysis to detect the prevalence of and in our geographical region. A total of 453 patients with symptoms of pneumonia and 90 controls with no history of lower respiratory tract infections were included in the study. A duplex polymerase chain reaction (PCR) targeting 543 bp region of gene of and 375 bp region of gene of was standardized for simultaneous detection of these atypical pathogens. Respiratory secretions, blood, and urine samples were collected from each patient and control and were subjected to duplex PCR, culture and serology for and. Urine samples were subjected for detecting antigen. Among the 453 patients investigated for, 52 (11.4%) were positive for IgM antibodies, 17 were positive by culture, and seven tested positive by PCR ( gene). Similarly for , 50 cases (11%) were serologically positive for IgM antibodies, one was positive by PCR ( gene) and urine antigen detection. A total of eight samples were positive by duplex PCR for gene ( = 7) and gene ( = 1). Of the 90 controls, two samples (2.2%) showed IgM positivity, and 15 (16.7%) showed IgG positivity for . For, three samples (3.3%) tested positive for IgM, and 12 (13.3%) tested positive for IgG antibodies. The study findings indicate the presence of and in our geographical region, and a combination of laboratory approaches including PCR, culture, and serology is required for effective detection of these agents.
Proactive environmental surveillance for Legionella pneumophila in hospitals that treat immunocompromised patients is a useful strategy for preventing nosocomial Legionnaires’ disease. We report the presence of L. pneumophila serogroup 1 in 15.2% of the water systems of our tertiary healthcare center, which should prompt health officials to formulate mitigation policies.
Documenting bacteria present in healthy individuals forms the first step in understanding the effects of microbial manipulation in aquaculture systems. Among the commensal microflora, gut microbiota has attracted extensive attention owing to their role in host metabolism and health maintenance. Basic knowledge on normal gut microbes within a particular host species is thus essential to determine how successfully these microbes can be manipulated and engineered for sustainable aquaculture systems. In spite of the good aquaculture potential of Mangrove red snapper, Lutjanus argentimaculatus, the information on microbial communities associated with the gut of this fish, and their contribution towards digestive efficiency and disease resistance is scarce. Therefore, an attempt was made to elucidate the abundance and diversity of cultivable gut microbes of wild caught L. argentimaculatus along with their digestive exoenzyme profiles and prohibitory effect against fish pathogens. Results on abundance showed similar gut bacterial loads as that of other marine fish imposing the less contribution of microflora to the volume of gut materials in fish. Eleven distinct bacterial species including two proposed novel vibrios were identified. An incidental observation of Morganella morganii throughout samples is an alarming signal, emphasizing the need for immediate de-gutting to avoid histamine intoxication. Abundance of digestive enzyme producers and excellent enzymatic potential of some isolates suggested the contribution of digestive enzymes may supplement to the symbiosis between gut flora and host and the information is of interest to aquaculture nutritionists/commercial industries. Interestingly, some isolates demonstrated estimable co-aggregation with aquatic pathogens, indicating their involvement in disease resistance and the results correlated well with gut microbial diversity. These findings highlight the significant role of gut microbes towards nutritional physiology and disease resistance of this aquaculture candidate in natural ecosystem. The culturable microbiota profiles of wild fish generated in the study can be applied for measuring the quality of husbandry routines in aquaculture facility of this marine fish. Overall, the present study fetches insights on the gut microbiome of healthy L. argentimaculatus which forms a platform for follow-up studies. The study may also help in the development of "functional" fish feeds for L. argentimaculatus. The investigation also demonstrated some potential digestive enzyme-producing isolates having probiotic applications in commercial aquaculture. Documenting the bacteria present in healthy individuals is the first step
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.