In this paper, the effect of surface roughness and pressure-dependent viscosity over couple-stresses squeeze film lubrication between circular stepped plates is studied. The modified average Reynolds equation is derived for the one-dimensional roughness structures, namely the radial roughness pattern and azimuthal roughness pattern. Modified equations for the nondimensional pressure, load-carrying capacity, and nondimensional squeeze film time are obtained. Also, the obtained results of our study for some special cases are compared with the previously published smooth surface case, and the results are found to be in very good agreement. It is observed that, one-dimensional azimuthal (radial) roughness pattern on the rough circular stepped plate increases (decreases) the load-carrying capacity and the squeeze film time as compared to the smooth case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.