Previous X-ray studies (2.8-A resolution) on the crystals of tobacco mosaic virus protein (TMVP) grown from solutions containing high salt have characterized the structure of the protein aggregate as a bilayered cylindrical disk formed by 34 identical subunits [Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., & Klug, A. (1978) Nature (London) 276, 362-368]. Under low-salt conditions, 20S aggregates are in equilibrium with 4S species and involved in the efficient nucleation of TMV assembly in vitro [Butler, P.J.G. (1984) J. Gen. Virol. 65, 253-279]. We have investigated by sedimentation velocity and near-UV circular dichroism (CD) measurements the structure of 20S aggregates in low salt (I = 0.1 potassium phosphate at pH 7.0 and 20 degrees C) and the aggregates in high salt [0.2 M (NH4)2SO4 in I = 0.1 tris(hydroxymethyl)aminomethane hydrochloride at pH 8.0 and 20 degrees C, close to the conditions under which TMVP crystallizes as disk aggregates]. At high salt, we observe structures (presumably stacks of disks) having s20,w values around 40, 45, and 50 S, but not the 20S species present in low-salt buffers. The near-UV CD spectrum of 20S aggregates has been obtained for the first time, using computer techniques, from the spectra of the 4S-20S equilibrium mixture and the 4S species. This spectrum of 20S aggregates differs dramatically from that of the stacks of disks examined at both high and low salt (into which the stacks can be returned by dialysis), indicating that the difference is not a solvent effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Heat shock proteins are rapidly synthesized when cells are exposed to stressful agents that cause protein damage. The 70-kDa heat shock induced proteins and their closely related constitutively expressed cognate proteins bind to unfolded and aberrant polypeptides and to hydrophilic peptides. The structural features of the 70-kDa heat shock proteins that confer the ability to associate with diverse polypeptides are unknown. In this study, we have used circular dichroism (CD) spectroscopy and secondary structure prediction to analyze the secondary structure of the mammalian 70-kDa heat shock cognate protein (hsc 70). The far-ultraviolet CD spectrum of hsc 70 indicates a large fraction of alpha-helix in the protein and resembles the spectra one obtains from proteins of the alpha/beta structural class. Analysis of the CD spectra with deconvolution methods yielded estimates of secondary structure content. The results indicate about 40% alpha-helix and 20% aperiodic structure within hsc 70 and between 16-41% beta-sheet and 21-0% beta-turn. The Garnier-Osguthorpe-Robson method of secondary structure prediction was applied to the rat hsc 70 amino acid sequence. The predicted estimates of alpha-helix and aperiodic structure closely matched the values derived from the CD analysis, whereas the predicted estimates of beta-sheet and beta-turn were midway between the CD-derived values. Present evidence suggests that the polypeptide ligand binding domain of the 70-kDa heat shock protein resides within the C-terminal 160 amino acids [Milarski, K. L., & Morimoto, R. I. (1989) J. Cell Biol. 109, 1947-1962].(ABSTRACT TRUNCATED AT 250 WORDS)
Recombinant DNA derived tobacco mosaic virus (vulgare strain) coat protein (r-TMVP) was obtained by cloning and expression in Escherichia coli and was purified by column chromatography, self-assembly polymerization, and precipitation. SDS-PAGE, amino terminal sequencing, and immunoblotting with polyclonal antibodies raised against TMVP confirmed the identify and purity of the recombinant protein. Isoelectric focusing in 8 M urea and fast atom bombardment mass spectrometry demonstrated that the r-TMVP is not acetylated at the amino terminus, unlike the wild-type protein isolated from the tobacco plant derived virus. The characterization of r-TMVP with regard to its self-assembly properties revealed reversible endothermic polymerization as studied by analytical ultracentrifugation, circular dichroism, and electron microscopy. However, the details of the assembly process differed from those of the wild-type protein. At neutral pH, low ionic strength, and 20 degrees C, TMVP forms a 20S two-turn helical rod that acts as a nucleus for further assembly with RNA and additional TMVP to form TMV. Under more acidic conditions, this 20S structure also acts as a nucleus for protein self-assembly to form viruslike RNA-free rods. The r-TMVP that is not acetylated carries an extra positive charge at the amino terminus and does not appear to form the 20S nucleus. Instead, it forms a 28S four-layer structure, which resembles in size and structure the dimer of the bilayer disk formed by the wild-type protein at pH 8.0, high ionic strength, and 20 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Previous studies of the coat protein of tobacco mosaic virus (TMVP) have shown that TMVP presumably exists as linear stacks of two-ring cylindrical disks in the 0.7 M ionic strength buffer used for crystallizing the disks for X-ray diffraction studies [Raghavendra, K., Adams, M.L., & Schuster, T.M. (1985) Biochemistry 24, 3298-3304]. The spectroscopic and sedimentation studies of solutions of TMVP under these crystallizing conditions have demonstrated a long-term metastability of these disk aggregates when they are placed in 0.1 M ionic strength buffers, as are used for reconstituting tobacco mosaic virus from TMVP and viral RNA. The present work describes an electron microscopic study of TMVP disk aggregates under the same solution conditions employed in the previous spectroscopic and sedimentation studies. The results show that in the pH 8.0 0.7 M ionic strength crystallization buffer TMVP exists as stacks of disks which range in size from about 6 to 24 layers, corresponding to 3-12 2-layer disk aggregates having 17 subunits per layer. These TMVP aggregates persist in a metastable form in 0.1 M ionic strength virus reconstitution buffer with no apparent changes in structure of the stacked disks. The results are consistent with the conclusions of the solution physical-chemical studies which suggest that the disk structure may not be related to the 20S TMVP aggregate that is the nucleation species in virus
Experiments have been carried out on the coat protein of tobacco mosaic virus (TMVP) to test for the occurrence of the previously postulated RNA-induced direct switching, during in vitro assembly of tobacco mosaic virus (TMV), of the subunit packing from the cylindrical bilayer disk to the virus helical arrangement. No evidence was found for such RNA-induced switching and no evidence for the direct participation of the bilayer disk in either the nucleation or elongation phases of the in vitro virus assembly. Instead, virus assembly proceeds by an initiation step involving the binding of the RNA to the previously characterized two-plus turn helical aggregate that is formed from small oligomers of subunits. However, a bilayer disk, which has been characterized in high ionic strength crystals, has been observed in low ionic strength virus assembly solutions only as a transient species upon depolymerization of dimers of bilayer disks formed in solution at high ionic strength, and not as an equilibrium species of TMVP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.