The paper presents the results of the study on the possibility of obtaining high-strength durable geopolymer concrete with fly ash as the basic component. As a result of the research conducted, it was found that the highest potential to obtain geopolymer concrete with high strength was shown for fine-grained, specially selected siliceous ashes from coal combustion. However, the geopolymer concrete obtained by alkaline activation of these ashes with the 8M NaOH solution was not resistant to freeze-thaw cycles. Replacement of 15% fly ash with calcined waste clay and the use of the mixture of NaOH solution and water glass as an activator substantially increased the durability of this concrete. This modification of the concrete composition changed the microstructure of the matrix in the hardened concrete, since the cancrinite was found in the study.
In the DTA studies of the clinkerization process the values of enthalpy attributed to the particular stages of clinker synthesis were determined and the energy consumption decrease due to the modification of the phase composition was calculated for 400 Jig.The activation of the low energy cement by Ba addition was shown using microcalorimetry and thermal methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.