Posttranslational modifications allow dynamic and reversible changes to protein function. In Arabidopsis thaliana, a small gene family encodes paralogs of the small ubiquitin-like posttranslational modifier. We studied the function of these paralogs. Single mutants of the SUM1 and SUM2 paralogs do not exhibit a clear phenotype. However, the corresponding double knockdown mutant revealed that SUM1 and SUM2 are essential for plant development, floral transition, and suppression of salicylic acid (SA)-dependent defense responses. The SUM1 and SUM2 genes are constitutively expressed, but their spatial expression patterns do not overlap. Tight transcriptional regulation of these two SUM genes appears to be important, as overexpression of either wild-type or conjugation-deficient mutants resulted in activation of SA-dependent defense responses, as did the sum1 sum2 knockdown mutant. Interestingly, expression of the paralog SUM3 is strongly and widely induced by SA and by the defense elicitor Flg22, whereas its expression is otherwise low and restricted to a few specific cell types. Loss of SUM3 does not result in an aberrant developmental phenotype except for late flowering, while SUM3 overexpression causes early flowering and activates plant defense. Apparently, SUM3 promotes plant defense downstream of SA, while SUM1 and SUM2 together prevent SA accumulation in noninfected plants.
Endophytic fungi represent an interesting group of microorganisms associated with the healthy tissues of terrestrial plants. They represent a large reservoir of genetic diversity. Fungal endophytes were isolated from the inner bark segments of ethnopharmaceutically important medicinal tree species, namely Terminalia arjuna, Crataeva magna, Azadirachta indica, Holarrhena antidysenterica, Terminalia chebula, and Butea monosperma (11 individual trees), growing in different regions of southern India. Forty-eight fungal species were recovered from 2200 bark segments. Mitosporic fungi represented a major group (61%), with ascomycetes (21%) and sterile mycelia (18%) the next major groups. Species of Fusarium, Pestalotiopsis, Myrothecium, Trichoderma, Verticillium, and Chaetomium were frequently isolated. Exclusive fungal taxa were recovered from five of the six plant species considered for the study of endophytic fungi. Rarefaction indices for species richness indicated the highest expected number of species for bark segments were isolated from T. arjuna and A. indica (20 species each) and from C. magna (18 species).
Fibroblast growth factor-1 (FGF-1) is a well characterized growth factor among the 22 members of the FGF superfamily in humans. It binds to all the four known FGF receptors and regulates a plethora of functions including cell growth, proliferation, migration, differentiation, and survival in different cell types. FGF-1 is involved in the regulation of diverse physiological processes such as development, angiogenesis, wound healing, adipogenesis, and neurogenesis. Deregulation of FGF-1 signaling is not only implicated in tumorigenesis but also is associated with tumor invasion and metastasis. Given the biomedical significance of FGFs and the fact that individual FGFs have different roles in diverse physiological processes, the analysis of signaling pathways induced by the binding of specific FGFs to their cognate receptors demands more focused efforts. Currently, there are no resources in the public domain that facilitate the analysis of signaling pathways induced by individual FGFs in the FGF/FGFR signaling system. Towards this, we have developed a resource of signaling reactions triggered by FGF-1/FGFR system in various cell types/tissues. The pathway data and the reaction map are made available for download in different community standard data exchange formats through NetPath and NetSlim signaling pathway resources.
The distinguished plant cell wall component referred to as hydroxyproline-rich glycoproteins (HRGPs) exists in two forms: soluble in the symplast and insoluble in the apoplast. Insolubilization of HRGPs in cell walls through oxidative cross-linking which is elicited by stress represents a characteristic feature exhibited by two classes of HRGPs, namely, extensins and proline⁄HRGPs. Cross-linking of these HRGPs is an important process to strengthen the cell walls that contributes to plant defence reactions. In this review, the available information on these proteins is analysed with respect to their roles in host-pathosystems and the various techniques applied for their characterization. Future prospects on strengthening of cell walls through gene regulation and transgenic approaches are also addressed.
Fungal endophytes reside in healthy tissues of all terrestrial plant taxa studied to date and are diverse and abundant in tropical woody angiosperms. Endophytic fungi were isolated from Terminalia arjuna, an important ethno pharmacological plant extensively used in ayurvedic medicines to treat heart ailments. Isolations were made from symptomless fresh inner bark as well as twig samples of five plants collected from three locations of riparian vegetation during two seasons (monsoon and winter) of 2003 and 2004. Two hundred and seventy eight isolates, representing 22 genera, were obtained from both seasons. Monsoon seasonal isolations representing 22 genera showed greater diversity. Coelomycetes were more numerous during the winter season than hyphomycetes and ascomycetes. Among the endophytes, the genus Pestalotiopsis dominated the endophyte assemblage of T. arjuna collected from different locations, dominance was greater during the winter season than the monsoon season. Endophytic colonization frequency was greater in inner bark (18.5%) than twigs (4.6%). The genera Pestalotiopsis (54.5%), Chaetomium (10.5%) and Myrothecium (9%) were the most predominant endophytes. Rarefaction indices indicated the highest expected number of species for bark samples, monsoon isolations and location 1 (Mysore).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.