The TGF-beta family of growth factors has been extensively studied and found to play major roles in bone physiology and disease. A novel, TGF-beta-inducible early gene (TIEG) in normal human fetal osteoblasts (hFOB) has been identified using differential-display PCR. Using this differentially expressed cDNA fragment of TIEG to screen a hOB cDNA library, a near full-length cDNA for this gene was isolated. Northern analyses indicated that the steady-state levels of the 3.5 kb TIEG mRNA increased within 30 min of TGF-beta treatment of human osteoblasts and reached a maximum of 10-fold above control levels at 120 min post-treatment. This regulation was independent of new protein synthesis. Computer sequence analyses indicates that TIEG mRNA encodes for a 480 amino-acid protein. The TIEG protein contains three zinc finger motifs, several proline-rich src homology-3 (SH3) binding domains at the C-terminal end, and is homologous in this region to the zinc finger-containing transcription factor family of genes. A growth factor/cytokine-specific induction of TIEG has been shown. TIEG expression in hFOB cells was highly induced by TGF-beta and bone morphogenetic protein-2 (BMP-2), with a moderate induction by epidermal growth factor (EGF), but no induction by other growth factors/cytokines was observed. In addition to osteoblastic cells, high levels of TIEG expression were detected in skeletal muscle tissue, while low or no detectable levels were found in brain, lung, liver or kidney. Because TIEG is an early induced putative transcription factor gene, and shows a growth factor induction and tissue specificity, its protein product might play an important role as a signalling molecule in osteoblastic cells.
Transforming growth factor -inducible early gene 1 (TIEG1) is a member of the Krüppel-like transcription factor family. To understand the physiological role of TIEG1, we generated TIEG ؊/؊ (null) mice and found that the TIEG ؊/؊ mice had increased osteoblast numbers with no increased bone formation parameters. However, when calvarial osteoblasts (OBs) were isolated from neonatal TIEG ؊/؊ and TIEG ؉/؉ mice and cultured in vitro, the TIEG ؊/؊ cells displayed reduced expression of important OB differentiation markers. When the OBs were differentiated in vitro by treatment with bone morphogenic protein 2, the OBs from TIEG ؉/؉ calvaria displayed several mineralized nodules in culture, whereas those from TIEG ؊/؊ mice showed no nodules. To characterize the OBs' ability to support osteoclast differentiation, the OBs from TIEG ؉/؉ and TIEG ؊/؊ mice were cultured with marrow and spleen cells from TIEG ؉/؉ mice. Significantly fewer osteoclasts developed when TIEG ؊/؊ OBs were used to support osteoclast differentiation than when TIEG ؉/؉ OBs were used. Examination of gene expression in the TIEG ؊/؊ OBs revealed decreased RANKL and increased OPG expression compared to TIEG ؉/؉ OBs. The addition of RANKL to these cocultures only partially restored the ability of TIEG ؊/؊ OBs to support osteoclast differentiation, whereas M-CSF alone or combined with RANKL had no additional effect on osteoclast differentiation. We conclude from these data that TIEG1 expression in OBs is critical for both osteoblast-mediated mineralization and osteoblast support of osteoclast differentiation.Krüppel-like transcription factors (KLFs) are DNA-binding transcriptional regulators which contain C 2 , H 2 -type zinc fingers and play important roles in regulating biological processes such as cell growth, differentiation, and embryogenesis (1, 5, 32). The number of members of the KLF family has been increasing, and it is estimated that 1% of the human genome might contain this family of regulatory factors (5, 11). Our laboratory has cloned a member of this family, the transforming growth factor  (TGF-)-inducible early gene 1 (TIEG1), since it represented a primary response gene to TGF- treatment in human osteoblasts (28). Cook et al. (4) identified TIEG2, which shares 91% homology with TIEG1 within the zinc finger region but only 44% homology at the N terminus region. They also showed evidence that overexpression of TIEG2 in Chinese hamster ovary cells inhibits cell proliferation. Recently, Wang et al. (36) identified another member of the TIEG family, TIEG3, which has properties similar to those of TIEG1 and TIEG2.A better understanding of the mechanism of action of TIEG1 is evolving. Using a GAL4-based transcriptional assay, Cook et al. (4) demonstrated that TIEG1 protein has three repression domains. Studies by Zhang et al. (39) identified an alpha-helical repression motif located within the repression domain of TIEG1 and TIEG2. These authors have also shown evidence that these motifs mediate the direct interaction of TIEG1 with mSin3A, whic...
In humans, glucocorticoids are known to have marked effects on bone metabolism and function, including the significant regulation of osteoblast cells. To aid in the understanding of the mechanism of glucocorticoid action on normal human osteoblasts (hOB), confluent cells were analyzed for the presence of glucocorticoid receptors (GR) as well as for the effects of the glucocorticoid dexamethasone (Dex) on the expression of both the rapid responding nuclear proto-oncogenes and the late responding structural genes for bone matrix proteins. The interactions between Dex and 1,25 dihydroxy vitamin D3 (1,25 D3) on the gene expression in these cells were also examined. Using a functional receptor assay, a mean of 11,600 functional nuclear bound glucocorticoid receptors (range 6,000-22,000) was measured in fifteen separate cell strains. Northern blot analysis with a cDNA probe to the human GR was used to demonstrate the presence of a 7Kb transcript which is a candidate mRNA for GR in these cells. In agreement with previous studies, treatment of the hOB cells with Dex increased the steady state mRNA levels for alkaline phosphatase (AP) but displayed little or no effect on the mRNA levels for osteocalcin (OC) and glyceraldehyde phosphate dehydrogenase (GAPDH). Interestingly, the 1,25 D3 inductions of mRNA levels for OC were blocked by Dex but enhanced for AP. The above effects of Dex on AP and OC gene expression, including the interaction with 1,25 D3, were also shown to occur at the level of protein. The effect of Dex on the mRNA levels of the nuclear proto-oncogenes c-myc, c-fos, and c-jun was also investigated, since the oncoproteins (Fos/Jun) appear to play a role in the delayed glucocorticoid regulation of structural genes. Interestingly, Dex increased the steady state levels of c-myc, c-fos, and c-jun mRNAs in nonproliferating (confluent) hOB cells by 3.5-, 10-, and 2.0-fold, respectively, over control (untreated cells) values within one h of steroid treatment. The Dex-induced mRNA levels were transient and returned to basal values within 24 h of the steroid treatment. A reduced but qualitatively similar pattern of response was found in proliferating hOB cells. The pattern of response of these genes to glucocorticoids in hOB cells mimics the response in avian liver cells but not in reproductive cells. These results support the theory that hOB cells are target cells for glucocorticoids, and that as a primary event glucocorticoids rapidly regulate the expression of the nuclear oncoproteins Fos/Jun in these cells.
Transforming growth factor-beta (TGF-beta) is present in high levels in bone and plays an important role in osteoblast growth and differentiation. In order to dissect the molecular mechanisms of action of TGF-beta on osteoblasts, the effects of TGF-beta on the steady state mRNA levels of c-fos, c-jun, and jun-B proto-oncogenes on normal human osteoblast-like cells (hOB) and a transformed human osteoblast cell line (MG-63) were measured. Treatment of hOBs with 2 ng/ml of TGF-beta 1 resulted in a rapid increase in c-fos mRNA levels as early as 15 min post-treatment. A maximum (10-fold) increase was observed at 30 min after TGF-beta treatment followed by a decrease to control values. Similar responses were measured whether the cells were rapidly proliferating or quiescent. TGF-beta 1 induced jun-B mRNA levels more gradually with steady increase initially observed at 30 min and a maximum induction measured at 2 h post-TGF-beta treatment. In contrast, TGF-beta treatment caused a time dependent decrease in the c-jun mRNA levels, an opposite pattern to that of jun-B mRNA. Treatment of hOBs with TGF-beta 1 in the presence of actinomycin-D abolished TGF-beta 1 induction of c-fos mRNA, suggesting that TGF-beta action is mediated via transcription. In the presence of cycloheximide, TGF-beta causes super-induction of c-fos mRNA at 30 min, indicating that the c-fos expression by TGF-beta is independent of new protein synthesis. Further, transfection of 3 kb upstream region of jun-B promoter linked to a CAT reporter gene into ROS 17/2.8 cells was sufficient to be regulated by TGF-beta 1. Interestingly, TGF-beta treatment also increased the mRNA levels of TGF-beta 1 itself at 4 h post TGF-beta treatment, with a maximum increase observed at 14 h of treatment. TGF-beta 1 treatment for 30 min were sufficient to cause a delayed increase in TGF-beta protein secretion within 24 h. These data support that TGF-beta has major effects on hOB cell proto-oncogene expression and that the nuclear proto-oncogenes respond as rapid, early genes in a cascade model of hormone action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.