ABSTRACT:The large growth of Web has influenced the generation of huge e-learning resources. This work is focused to devise a personal recommendation system that will address the sparsity and cold-start problems and that will provide a have a more diverse recommendation list for each learner. Here Improved Neighborhood-based Collaborative filtering and Hybrid Genetic algorithm with Particle Swarm Optimization (PSO) method is implemented. These techniques are employed for improving the diversity, and the convergence towards the preferred solution taking into account the preferences of users. The results obtained from the experiments show that the proposed method outperforms current algorithms in terms of accuracy measures and can alleviate cold-start and sparsity problems and generate a more diverse recommendation list as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.