Forged portraits of people are widely used for creating deceitful propaganda of individuals or events in social media, and even for cooking up fake pieces of evidence in court proceedings. Hence, it is very important to find the authenticity of the images, and image forgery detection is a significant research area now. This work proposes an ensemble learning technique by combining predictions of different Convolutional Neural Networks (CNNs) for detecting forged portrait photographs. In the proposed method seven different pretrained CNN architectures such as AlexNet, VGG-16, GoogLeNet, Res-Net-18, ResNet-101, Inception-v3, and Inception-ResNet-v2 are utilized. As an initial step, we fine-tune the seven pretrained networks for portrait forgery detection with illuminant maps of images as input, and then uses a majority voting ensemble scheme to combine predictions from the fine-tuned networks. Ensemble methods had been found out to be good for improving the generalization capability of classification models. Experimental analysis is conducted using two publicly available portrait splicing datasets (DSO-1 and DSI-1). The results show that the proposed method outperforms the state-of-the-art methods using traditional machine learning techniques as well as the methods using single CNN classification models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.